scholarly journals Pilot-study of ridden walk on the circle – effects of progressive collection and lateral exercises

2021 ◽  
pp. 1-16
Author(s):  
A. Egenvall ◽  
H. Engström ◽  
A. Byström

When collecting the horse, the rider influences stride length, forehand/hindquarters balance, and head-neck position. The study aim was to describe the vertical excursion of the withers and croup, and the sagittal cannon angles during collection and lateral exercises. Ten horses were ridden by five riders during 14 trials (1-5 per rider) on 10 m circles. Each trial included free walk, four degrees of increasing collection, and haunches-in and shoulderin. Inertial measurement units (100 Hz) were positioned on the withers, the first sacral vertebra (S1) and laterally on the cannons. Data for each exercise were stride-split. Range of motion (ROM), minima and maxima were studied in mixed models, controlling for stride duration. S1 vertical ROM ranged between 30-32 mm (highest degree of collection) and 51 mm (free walk), significantly smaller with increasing collection. S1 ROM during the inside hind limb step was smaller in haunches-in and shoulder-in compared to at the lowest degree of collection. Withers ROM ranged between 12 mm (lowest degree of collection) and 16-18 mm (highest degree of collection). Fore cannon protraction-retraction ROM ranged between 57° (highest degree of collection) and 63° (free walk). Hind cannon protraction-retraction ROM ranged between 47-50° (highest degree of collection) and 51-56° (free walk). All limbs had significantly smaller ROM at the highest degree of collection. Cannon ROMs were smaller for the outer limbs in haunches-in, and all limbs but the outer fore in shoulder-in, compared to the lowest degree of collection. Progressively decreasing ROM for fore- and hind limb cannons and S1 suggest that the riders achieved a shortening of the gait at higher degrees of collection. In shoulder-in and haunches-in, the diagonal oriented in the direction of motion showed decreased hind limb cannon ROM while forelimb cannon ROM was maintained, which could suggest increased shoulder freedom and collection of the targeted diagonal.

2020 ◽  
Vol 2020 ◽  
pp. 1-6
Author(s):  
Sota Araki ◽  
Masayuki Kawada ◽  
Takasuke Miyazaki ◽  
Yuki Nakai ◽  
Yasufumi Takeshita ◽  
...  

Many stroke patients rely on cane or ankle-foot orthosis during gait rehabilitation. The purpose of this study was to investigate the immediate effect of functional electrical stimulation (FES) to the gluteus medius (GMed) and tibialis anterior (TA) on gait performance in stroke patients, including those who needed assistive devices. Fourteen stroke patients were enrolled in this study (mean poststroke duration: 194.9 ± 189.6   d ; mean age: 72.8 ± 10.7   y ). Participants walked 14 m at a comfortable velocity with and without FES to the GMed and TA. After an adaptation period, lower-limb motion was measured using magnetic inertial measurement units attached to the pelvis and the lower limb of the affected side. Motion range of angle of the affected thigh and shank segments in the sagittal plane, motion range of the affected hip and knee extension-flexion angle, step time, and stride time were calculated from inertial measurement units during the middle ten walking strides. Gait velocity, cadence, and stride length were also calculated. These gait indicators, both with and without FES, were compared. Gait velocity was significantly faster with FES ( p = 0.035 ). Similarly, stride length and motion range of the shank of the affected side were significantly greater with FES (stride length: p = 0.018 ; motion range of the shank: p = 0.02 6). Meanwhile, cadence showed no significant difference ( p = 0.238 ) in gait with or without FES. Similarly, range of motion of the affected hip joint, knee joint, and thigh did not differ significantly depending on FES condition ( p = 0.115 ‐ 0.529 ). FES to the GMed and TA during gait produced an improvement in gait velocity, stride length, and motion range of the shank. Our results will allow therapists to use FES on stroke patients with varying conditions.


Animals ◽  
2019 ◽  
Vol 9 (10) ◽  
pp. 712 ◽  
Author(s):  
Agneta Egenvall ◽  
Hilary M. Clayton ◽  
Marie Eisersiö ◽  
Lars Roepstorff ◽  
Anna Byström

In dressage, the performance of transitions between gaits and halts is an integral part of riding sessions. The study aimed to evaluate rein tension before, during and after the transitions between different gaits and the transitions into halts. The kinematic (inertial measurement units) data for the head and croup, and rein tension data, were collected (128 Hz) from six professional riders each riding three of their own horses, training levels varying from basic to advanced, during normal training sessions. The activities were categorised into gaits, halts and transitions based on video evaluation. The transitions were categorised as without (type 1) or with (type 2) intermediate steps that are not normally present in the gaits preceding or following the transition. The differences in the median rein tension before/during/after transitions, between the types and left/right reins were analysed in mixed models. The rein tension just before the transition was the strongest determinant of tension during the transition. The rein tension was slightly lower during upward transitions compared to downward transitions, reflecting the pattern of the preceding gait. Type 1 and 2 downward transitions were not different regarding rein tension. The left rein tension was lower than right rein tension. The rein tension associated with the transitions and halts varied substantially between riders and horses. The generally strong association of the gaits and their inherent biomechanics with rein tension should be taken into account when riding transitions and halts.


2015 ◽  
Vol 23 (1) ◽  
pp. 18-23 ◽  
Author(s):  
M. Monda ◽  
A. Goldberg ◽  
P. Smitham ◽  
M. Thornton ◽  
I. McCarthy

To study mobility in older populations it can be advantageous to use portable gait analysis systems, such as inertial measurement units (IMUs), which can be used in the community. To define a normal range, 136 active subjects were recruited with an age range of 18 to 97. Four IMUs were attached to the subjects, one on each thigh and shank. Subjects were asked to walk 10 m at their own self-selected speed. The ranges of motion of thigh, shank, and knee in both swing and stance phase were calculated, in addition to stride duration. Thigh, shank, and knee range of movement in swing and stance were significantly different only in the > 80 age group. Regressions of angle against age showed a cubic relationship. Stride duration showed a weak linear relationship with age, increasing by approximately 0.1% per year.


Sensors ◽  
2020 ◽  
Vol 20 (10) ◽  
pp. 2983
Author(s):  
Marie Sapone ◽  
Pauline Martin ◽  
Khalil Ben Mansour ◽  
Henry Château ◽  
Frédéric Marin

The development of on-board sensors, such as inertial measurement units (IMU), has made it possible to develop new methods for analyzing horse locomotion to detect lameness. The detection of spatiotemporal events is one of the keystones in the analysis of horse locomotion. This study assesses the performance of four methods for detecting Foot on and Foot off events. They were developed from an IMU positioned on the canon bone of eight horses during trotting recording on a treadmill and compared to a standard gold method based on motion capture. These methods are based on accelerometer and gyroscope data and use either thresholding or wavelets to detect stride events. The two methods developed from gyroscopic data showed more precision than those developed from accelerometric data with a bias less than 0.6% of stride duration for Foot on and 0.1% of stride duration for Foot off. The gyroscope is less impacted by the different patterns of strides, specific to each horse. To conclude, methods using the gyroscope present the potential of further developments to investigate the effects of different gait paces and ground types in the analysis of horse locomotion.


2015 ◽  
Vol 2 (2) ◽  
pp. 58-63 ◽  
Author(s):  
Salvatore Sessa ◽  
Massimiliano Zecca ◽  
Luca Bartolomeo ◽  
Takamichi Takashima ◽  
Hiroshi Fujimoto ◽  
...  

Sensors ◽  
2022 ◽  
Vol 22 (1) ◽  
pp. 376
Author(s):  
Cornelis J. de Ruiter ◽  
Erik Wilmes ◽  
Pepijn S. van Ardenne ◽  
Niels Houtkamp ◽  
Reinder A. Prince ◽  
...  

Inertial measurement units (IMUs) fixed to the lower limbs have been reported to provide accurate estimates of stride lengths (SLs) during walking. Due to technical challenges, validation of such estimates in running is generally limited to speeds (well) below 5 m·s−1. However, athletes sprinting at (sub)maximal effort already surpass 5 m·s−1 after a few strides. The present study aimed to develop and validate IMU-derived SLs during maximal linear overground sprints. Recreational athletes (n = 21) completed two sets of three 35 m sprints executed at 60, 80, and 100% of subjective effort, with an IMU on the instep of each shoe. Reference SLs from start to ~30 m were obtained with a series of video cameras. SLs from IMUs were obtained by double integration of horizontal acceleration with a zero-velocity update, corrected for acceleration artefacts at touch-down of the feet. Peak sprint speeds (mean ± SD) reached at the three levels of effort were 7.02 ± 0.80, 7.65 ± 0.77, and 8.42 ± 0.85 m·s−1, respectively. Biases (±Limits of Agreement) of SLs obtained from all participants during sprints at 60, 80, and 100% effort were 0.01% (±6.33%), −0.75% (±6.39%), and −2.51% (±8.54%), respectively. In conclusion, in recreational athletes wearing IMUs tightly fixed to their shoes, stride length can be estimated with reasonable accuracy during maximal linear sprint acceleration.


Author(s):  
Miguel M. C. Bhagubai ◽  
Gerjan Wolterink ◽  
Anne Schwarz ◽  
Jeremia P. O. Held ◽  
Bert-Jan F. Van Beijnum ◽  
...  

Sensors ◽  
2020 ◽  
Vol 20 (10) ◽  
pp. 2858 ◽  
Author(s):  
Timo Rantalainen ◽  
Laura Karavirta ◽  
Henrikki Pirkola ◽  
Taina Rantanen ◽  
Vesa Linnamo

Gait variability observed in step duration is predictive of impending adverse health outcomes among apparently healthy older adults and could potentially be evaluated using wearable sensors (inertial measurement units, IMU). The purpose of the present study was to establish the reliability and concurrent validity of gait variability and complexity evaluated with a waist and an ankle-worn IMU. Seventeen women (age 74.8 (SD 44) years) and 10 men (73.7 (4.1) years) attended two laboratory measurement sessions a week apart. Their stride duration variability was concurrently evaluated based on a continuous 3 min walk using a force plate and a waist- and an ankle-worn IMU. Their gait complexity (multiscale sample entropy) was evaluated from the waist-worn IMU. The force plate indicated excellent stride duration variability reliability (intra-class correlation coefficient, ICC = 0.90), whereas fair to good reliability (ICC = 0.47 to 0.66) was observed from the IMUs. The IMUs exhibited poor to excellent concurrent validity in stride duration variability compared to the force plate (ICC = 0.22 to 0.93). A good to excellent reliability was observed for gait complexity in most coarseness scales (ICC = 0.60 to 0.82). A reasonable congruence with the force plate-measured stride duration variability was observed on many coarseness scales (correlation coefficient = 0.38 to 0.83). In conclusion, waist-worn IMU entropy estimates may provide a feasible indicator of gait variability among community-dwelling ambulatory older adults.


Sensors ◽  
2019 ◽  
Vol 19 (11) ◽  
pp. 2601 ◽  
Author(s):  
Michael V Potter ◽  
Lauro V Ojeda ◽  
Noel C Perkins ◽  
Stephen M Cain

Researchers employ foot-mounted inertial measurement units (IMUs) to estimate the three-dimensional trajectory of the feet as well as a rich array of gait parameters. However, the accuracy of those estimates depends critically on the limitations of the accelerometers and angular velocity gyros embedded in the IMU design. In this study, we reveal the effects of accelerometer range, gyro range, and sampling frequency on gait parameters (e.g., distance traveled, stride length, and stride angle) estimated using the zero-velocity update (ZUPT) method. The novelty and contribution of this work are that it: (1) quantifies these effects at mean speeds commensurate with competitive distance running (up to 6.4 m/s); (2) identifies the root causes of inaccurate foot trajectory estimates obtained from the ZUPT method; and (3) offers important engineering recommendations for selecting accurate IMUs for studying human running. The results demonstrate that the accuracy of the estimated gait parameters generally degrades with increased mean running speed and with decreased accelerometer range, gyro range, and sampling frequency. In particular, the saturation of the accelerometer and/or gyro induced during running for some IMU designs may render those designs highly inaccurate for estimating gait parameters.


Sign in / Sign up

Export Citation Format

Share Document