scholarly journals Rein Tension in Transitions and Halts during Equestrian Dressage Training

Animals ◽  
2019 ◽  
Vol 9 (10) ◽  
pp. 712 ◽  
Author(s):  
Agneta Egenvall ◽  
Hilary M. Clayton ◽  
Marie Eisersiö ◽  
Lars Roepstorff ◽  
Anna Byström

In dressage, the performance of transitions between gaits and halts is an integral part of riding sessions. The study aimed to evaluate rein tension before, during and after the transitions between different gaits and the transitions into halts. The kinematic (inertial measurement units) data for the head and croup, and rein tension data, were collected (128 Hz) from six professional riders each riding three of their own horses, training levels varying from basic to advanced, during normal training sessions. The activities were categorised into gaits, halts and transitions based on video evaluation. The transitions were categorised as without (type 1) or with (type 2) intermediate steps that are not normally present in the gaits preceding or following the transition. The differences in the median rein tension before/during/after transitions, between the types and left/right reins were analysed in mixed models. The rein tension just before the transition was the strongest determinant of tension during the transition. The rein tension was slightly lower during upward transitions compared to downward transitions, reflecting the pattern of the preceding gait. Type 1 and 2 downward transitions were not different regarding rein tension. The left rein tension was lower than right rein tension. The rein tension associated with the transitions and halts varied substantially between riders and horses. The generally strong association of the gaits and their inherent biomechanics with rein tension should be taken into account when riding transitions and halts.

2021 ◽  
pp. 1-16
Author(s):  
A. Egenvall ◽  
H. Engström ◽  
A. Byström

When collecting the horse, the rider influences stride length, forehand/hindquarters balance, and head-neck position. The study aim was to describe the vertical excursion of the withers and croup, and the sagittal cannon angles during collection and lateral exercises. Ten horses were ridden by five riders during 14 trials (1-5 per rider) on 10 m circles. Each trial included free walk, four degrees of increasing collection, and haunches-in and shoulderin. Inertial measurement units (100 Hz) were positioned on the withers, the first sacral vertebra (S1) and laterally on the cannons. Data for each exercise were stride-split. Range of motion (ROM), minima and maxima were studied in mixed models, controlling for stride duration. S1 vertical ROM ranged between 30-32 mm (highest degree of collection) and 51 mm (free walk), significantly smaller with increasing collection. S1 ROM during the inside hind limb step was smaller in haunches-in and shoulder-in compared to at the lowest degree of collection. Withers ROM ranged between 12 mm (lowest degree of collection) and 16-18 mm (highest degree of collection). Fore cannon protraction-retraction ROM ranged between 57° (highest degree of collection) and 63° (free walk). Hind cannon protraction-retraction ROM ranged between 47-50° (highest degree of collection) and 51-56° (free walk). All limbs had significantly smaller ROM at the highest degree of collection. Cannon ROMs were smaller for the outer limbs in haunches-in, and all limbs but the outer fore in shoulder-in, compared to the lowest degree of collection. Progressively decreasing ROM for fore- and hind limb cannons and S1 suggest that the riders achieved a shortening of the gait at higher degrees of collection. In shoulder-in and haunches-in, the diagonal oriented in the direction of motion showed decreased hind limb cannon ROM while forelimb cannon ROM was maintained, which could suggest increased shoulder freedom and collection of the targeted diagonal.


2017 ◽  
Vol 3 (1) ◽  
pp. 7-10 ◽  
Author(s):  
Jan Kuschan ◽  
Henning Schmidt ◽  
Jörg Krüger

Abstract:This paper presents an analysis of two distinct human lifting movements regarding acceleration and angular velocity. For the first movement, the ergonomic one, the test persons produced the lifting power by squatting down, bending at the hips and knees only. Whereas performing the unergonomic one they bent forward lifting the box mainly with their backs. The measurements were taken by using a vest equipped with five Inertial Measurement Units (IMU) with 9 Dimensions of Freedom (DOF) each. In the following the IMU data captured for these two movements will be evaluated using statistics and visualized. It will also be discussed with respect to their suitability as features for further machine learning classifications. The reason for observing these movements is that occupational diseases of the musculoskeletal system lead to a reduction of the workers’ quality of life and extra costs for companies. Therefore, a vest, called CareJack, was designed to give the worker a real-time feedback about his ergonomic state while working. The CareJack is an approach to reduce the risk of spinal and back diseases. This paper will also present the idea behind it as well as its main components.


2021 ◽  
pp. 1-19
Author(s):  
Thomas Rietveld ◽  
Barry S. Mason ◽  
Victoria L. Goosey-Tolfrey ◽  
Lucas H. V. van der Woude ◽  
Sonja de Groot ◽  
...  

2020 ◽  
Vol 6 (3) ◽  
pp. 237-240
Author(s):  
Simon Beck ◽  
Bernhard Laufer ◽  
Sabine Krueger-Ziolek ◽  
Knut Moeller

AbstractDemographic changes and increasing air pollution entail that monitoring of respiratory parameters is in the focus of research. In this study, two customary inertial measurement units (IMUs) are used to measure the breathing rate by using quaternions. One IMU was located ventral, and one was located dorsal on the thorax with a belt. The relative angle between the quaternion of each IMU was calculated and compared to the respiratory frequency obtained by a spirometer, which was used as a reference. A frequency analysis of both signals showed that the obtained respiratory rates vary slightly (less than 0.2/min) between the two systems. The introduced belt can analyse the respiratory rate and can be used for surveillance tasks in clinical settings.


2021 ◽  
Vol 32 (4) ◽  
Author(s):  
Luigi D’Alfonso ◽  
Emanuele Garone ◽  
Pietro Muraca ◽  
Paolo Pugliese

AbstractIn this work, we face the problem of estimating the relative position and orientation of a camera and an object, when they are both equipped with inertial measurement units (IMUs), and the object exhibits a set of n landmark points with known coordinates (the so-called Pose estimation or PnP Problem). We present two algorithms that, fusing the information provided by the camera and the IMUs, solve the PnP problem with good accuracy. These algorithms only use the measurements given by IMUs’ inclinometers, as the magnetometers usually give inaccurate estimates of the Earth magnetic vector. The effectiveness of the proposed methods is assessed by numerical simulations and experimental tests. The results of the tests are compared with the most recent methods proposed in the literature.


2021 ◽  
Vol 10 (9) ◽  
pp. 1804
Author(s):  
Jorge Posada-Ordax ◽  
Julia Cosin-Matamoros ◽  
Marta Elena Losa-Iglesias ◽  
Ricardo Becerro-de-Bengoa-Vallejo ◽  
Laura Esteban-Gonzalo ◽  
...  

In recent years, interest in finding alternatives for the evaluation of mobility has increased. Inertial measurement units (IMUs) stand out for their portability, size, and low price. The objective of this study was to examine the accuracy and repeatability of a commercially available IMU under controlled conditions in healthy subjects. A total of 36 subjects, including 17 males and 19 females were analyzed with a Wiva Science IMU in a corridor test while walking for 10 m and in a threadmill at 1.6 km/h, 2.4 km/h, 3.2 km/h, 4 km/h, and 4.8 km/h for one minute. We found no difference when we compared the variables at 4 km/h and 4.8 km/h. However, we found greater differences and errors at 1.6 km/h, 2.4 km/h and 3.2 km/h, and the latter one (1.6 km/h) generated more error. The main conclusion is that the Wiva Science IMU is reliable at high speeds but loses reliability at low speeds.


Sign in / Sign up

Export Citation Format

Share Document