Climate change impacts on the ecology of Fusarium graminearum species complex and susceptibility of wheat to Fusarium head blight: a review

2016 ◽  
Vol 9 (5) ◽  
pp. 685-700 ◽  
Author(s):  
M. Vaughan ◽  
D. Backhouse ◽  
E.M. Del Ponte

Fusarium head blight (FHB) of wheat, caused mainly by a few members of the Fusarium graminearum species complex (FGSC), is a major threat to agricultural grain production, food safety, and animal health. The severity of disease epidemics and accumulation of associated trichothecene mycotoxins in wheat kernels is strongly driven by meteorological factors. The potential impacts of change in climate are reviewed from the perspective of the FGSC life cycle and host resistance mechanisms influenced by abiotic pressures at the ecological, physiological and molecular level. Alterations in climate patterns and cropping systems may affect the distribution, composition and load of FGSC inoculum, but quantitative information is lacking regarding the differential responses among FGSC members. In general, the coincidence of wet and warm environment during flowering enhances the risk of FHB epidemics, but the magnitude and direction of the change in FHB and mycotoxin risk will be a consequence of a multitude of effects on key processes affecting inoculum dynamics and host susceptibility. Rates of residue decomposition, inoculum production and dispersal may be significantly altered by changes in crop rotations, atmospheric carbon dioxide concentration ([CO2]), temperature and precipitation patterns, but the impact may be much greater for regions where inoculum is more limited, such as temperate climates. In regions of non-limiting inoculum, climate change effects will likely be greater on the pathogenic rather than on the saprophytic phase. Although the mechanisms by which abiotic stress influences wheat defences against Fusarium species are unknown, available data would suggest that wheat may be more susceptible to Fusarium infection under future climate conditions. Additional research in this area should be a priority so that breeding efforts and climate resilient management strategies can be developed.

Plant Disease ◽  
2019 ◽  
Vol 103 (5) ◽  
pp. 929-937 ◽  
Author(s):  
Yabing Duan ◽  
Xian Tao ◽  
Huahua Zhao ◽  
Xuemei Xiao ◽  
Meixia Li ◽  
...  

Fusarium graminearum species complex (FGSC), causing Fusarium head blight (FHB) of wheat, has species-specific geographical distributions in wheat-growing regions. In recent years, benzimidazole resistance of FHB pathogens has been largely widespread in China. Although the demethylation inhibitor fungicide metconazole has been used for FHB control in some countries, no information about metconazole sensitivity of Chinese FHB pathogen populations and efficacy of metconazole in FHB control in China is available. In this study, the sensitivity of FGSC to metconazole was measured with 32 carbendazim-sensitive strains and 35 carbendazim-resistant strains based on mycelial growth. The 50% effective concentration values of 67 strains were normally distributed and ranged from 0.0209 to 0.0838 μg ml−1, with a mean of 0.0481 ± 0.0134 μg ml−1. No significant difference in metconazole sensitivity was observed between carbendazim-sensitive and -resistant populations. An interactive effect of metconazole and phenamacril, a novel cyanoacrilate fungicide approved in China against Fusarium spp., in inhibiting mycelial growth showed an additive interaction at different ratios. Furthermore, field trials to evaluate the effect of metconazole and metconazole + phenamacril treatments in FHB control, deoxynivalenol (DON) production, and grain yields were performed. Compared with the fungicides carbendazim and phenamacril currently used in China, metconazole exhibits a better efficacy for FHB control, DON production, and grain yields, and dramatically reduces use dosages of chemical compounds in the field. The mixture of metconazole and phenamacril at ratios of 2:3 and 1:2 showed the greatest efficacy for FHB control, DON production, and grain yields among all the fungicide treatments but its use dosages were higher in comparison with metconazole alone. In addition, FHB control, grain yields, and DON levels were significantly correlated with each other, showing that visual disease indices can be used as an indicator of grain yields and DON contamination. Meanwhile, the frequency of carbendazim-resistant alleles in F. graminearum populations was dramatically reduced after metconazole and phenamacril alone and the mixture of metconazole and phenamacril applications, indicating that metconazole and a mixture of metconazole and phenamacril can be used for carbendazim resistance management of FHB in wheat. Overall, the findings of this study provide important data for resistance management of FHB and reducing DON contamination in wheat grains.


Author(s):  
Berna Tunalı ◽  
Emre Yörük ◽  
Özlem Sefer ◽  
Bayram Kansu ◽  
Bahram Sharifnabi

Fusarium graminearum species complex is the major Fusarium head blight disease pathogen in worldwide. Fusarium head blight disease lead to damages on small grain cereals. The identification of the F. graminearum species complex is important for improving disease control and management. Traditional identification methods such as macroscopy and microscopy analysis need to be supported by biochemical and genetics assays. Thus, DNA sequencing-based methods is one of the most preferred, reliable, low priced in the identification methods. In the study, 54 F. graminearum isolates obtained from diseased wheat, barley and corn fields in Turkey and Iran were identified by morphological characteristics and then characterized by species-specific SCAR marker. β-tubulin, Tef1-α, 28s rDNA and Histone H3 genes amplified, purified and then sequenced. The merged multiloci length was obtained as last of all 2215 bp. These sequencing results was used to multiloci genotyping assays. Last of all, 20 isolates were determined as F. graminearum sensu stricto by multiloci genotyping analysis. Remaining isolates were identified as F. asiaticum or Fusarium sp. . The findings are important in terms of revealing the first-time identification in Turkish and Iranian isolates as F. graminearum species complex members by amplification four (β-tubulin, Tef1-α, 28s rDNA and Histone H3) highly conserved DNA regions.


2016 ◽  
Vol 6 (12) ◽  
pp. 3883-3892 ◽  
Author(s):  
Haruhisha Suga ◽  
Koji Kageyama ◽  
Masafumi Shimizu ◽  
Misturo Hyakumachi

Abstract Members of the Fusarium graminearum species complex (Fg complex or FGSC) are the primary pathogens causing Fusarium head blight in wheat and barley worldwide. A natural pathogenicity mutant (strain 0225022) was found in a sample of the Fg complex collected in Japan. The mutant strain did not induce symptoms in wheat spikes beyond the point of inoculation, and did not form perithecia. No segregation of phenotypic deficiencies occurred in the progenies of a cross between the mutant and a fully pathogenic wild-type strain, which suggested that a single genetic locus controlled both traits. The locus was mapped to chromosome 2 by using sequence-tagged markers; and a deletion of ∼3 kb was detected in the mapped region of the mutant strain. The wild-type strain contains the FGSG_02810 gene, encoding a putative glycosylphosphatidylinositol anchor protein, in this region. The contribution of FGSG_02810 to pathogenicity and perithecium formation was confirmed by complementation in the mutant strain using gene transfer, and by gene disruption in the wild-type strain.


Plant Disease ◽  
2020 ◽  
Vol 104 (8) ◽  
pp. 2138-2143
Author(s):  
Fei Dong ◽  
Xiao Zhang ◽  
Jian Hong Xu ◽  
Jian Rong Shi ◽  
Yin-Won Lee ◽  
...  

Members of Fusarium graminearum species complex (FGSC) are the major pathogens that cause Fusarium head blight (FHB) in cereals worldwide. Symptoms of FHB on rice, including dark staining or browning of rice glumes, were recently observed in Jiangsu Province, China. To improve our understanding of the pathogens involved, 201 FGSC isolates were obtained from freshly harvested rice samples and identified by phylogenetic analyses. Among the 201 FGSC isolates, 196 were F. asiaticum and the remaining 5 were F. graminearum. Trichothecene chemotype and chemical analyses showed that 68.4% of the F. asiaticum isolates were the 3-acetyldeoxynivalenol (3ADON) chemotype and the remainder were the nivalenol (NIV) chemotype. All of the F. graminearum isolates were the 15-acetyldeoxynivalenol chemotype. Pathogenicity assays showed that both the 3ADON and NIV chemotypes of F. asiaticum could infect wheat and rice spikes. FHB severity and trichothecene toxin analysis revealed that F. asiaticum with the NIV chemotype was less aggressive than that with the 3ADON chemotype in wheat, while the NIV-producing strains were more virulent than the 3ADON-producing strains in rice. F. asiaticum isolates with different chemotypes did not show significant differences in mycelial growth, sporulation, conidial dimensions, or perithecial production. These findings would provide useful information for developing management strategies for the control of FHB in China.


2017 ◽  
Author(s):  
C.P. Nicolli ◽  
F.J. Machado ◽  
P. Spolti ◽  
E.M. Del Ponte

AbstractFusarium graminearum of the 15-acetyl(A)deoxynivalenol(D0N) chemotype is the main cause of Fusarium head blight (FHB) of wheat in south of Brazil. However, 3-ADON and nivalenol(NIV) chemotypes have been found in other members of the species complex causing FHB in wheat. To improve our understanding of the pathogen ecology, we assessed a range of fitness-related traits in a sample of 30 strains representatives of 15-ADON (F. graminearum), 3-ADON (F. cortaderiae and F. austroamericanum) and NIV (F. meridionale and F. cortaderiae). These included: perithecia formation on three cereal-based substrates, mycelial growth at two suboptimal temperatures, sporulation and germination, pathogenicity towards a susceptible and a moderately resistant cultivar and sensitivity to tebuconazole. The most important trait favoring F. graminearum was its 2x higher sexual fertility (> 40% PPI = perithecia production index) than the other species (< 30% PPI); PPI varied among substrates (maize > rice > wheat). In addition, sensitivity to tebuconazole appeared lower in F. graminearum which had the only strain with EC50 > 1 ppm. In the pathogenicity assays, the DON-producers were generally more aggressive (1.5 to 2x higher final severity) towards the two cultivars, with 3-ADON or 15-ADON leading to higher area under the severity curve than the NIV strains in the susceptible and moderately resistant cv., respectively. There was significant variation among strains of a same species with regards asexual fertility (mycelial growth, macroconidia production and germination), which suggest a strain-rather than a species-specific differences. These results contribute new knowledge to improve our understanding of the pathogen-related traits that may explain the dominance of certain members of the species complex in specific wheat agroecosystems.


Mycologia ◽  
2009 ◽  
Vol 101 (6) ◽  
pp. 841-852 ◽  
Author(s):  
Tapani Yli-Mattila ◽  
Tatiana Gagkaeva ◽  
Todd J. Ward ◽  
Takayuki Aoki ◽  
H. Corby Kistler ◽  
...  

Plant Disease ◽  
2021 ◽  
Author(s):  
Fei Dong ◽  
Yunpeng Li ◽  
Xinyuan Chen ◽  
Jirong Wu ◽  
Xiao Zhang ◽  
...  

Several weed species are known as alternative hosts of the Fusarium graminearum species complex (FGSC), and their epidemiological significance in Fusarium head blight (FHB) has been investigated, but scant information is available regarding FGSC occurrence in weeds near Chinese wheat fields. To evaluate the potential role of gramineous weeds surrounding wheat fields in FHB, 306 FGSC isolates were obtained from 210 gramineous weed samples in 2018 in Jiangsu Province. Among them, 289 were F. asiaticum and the remainder were F. graminearum. Trichothecene genotype and mycotoxin analyses revealed that 74.3% of the F. asiaticum isolates were the 3-acetyldeoxynivalenol (3ADON) chemotype and the remainder were the nivalenol (NIV) chemotype. Additionally, 82.4% of F. graminearum isolates were the 15-acetyldeoxynivalenol (15ADON) chemotype and the remainder were the NIV chemotype. FHB severity and trichothecene analysis indicated that F. asiaticum isolates with the 3ADON chemotype were more aggressive than those with the NIV chemotype in wheat. 3ADON and NIV chemotypes of F. asiaticum isolated from weeds and wheat showed no significant differences in pathogenicity in wheat. All selected F. asiaticum isolates produced perithecia, with little difference between the 3ADON and NIV chemotypes. These results highlight the epidemiology of the FGSC isolated from weeds near wheat fields, with implications for reducing FHB inoculum in China.


Sign in / Sign up

Export Citation Format

Share Document