scholarly journals Effect of Mercury (HgCl2) Sub-chronic Doses Exposure in Tubifex sp.

2019 ◽  
Vol 12 (4) ◽  
pp. 496-501
Author(s):  
Irawati Mei Widiastuti ◽  
Diana Arfiati ◽  
Muhammad Musa ◽  
Asus Maizar Suryanto Hertika
Keyword(s):  
2014 ◽  
Vol 2014 ◽  
pp. 1-4 ◽  
Author(s):  
Vahid Yousefi Babadi ◽  
Leila Sadeghi ◽  
Kobra Shirani ◽  
Ali Akbar Malekirad ◽  
Mohammad Rezaei

Manganese (Mn) is a naturally occurring element and an essential nutrient for humans and animals. However, exposure to high levels of Mn may cause neurotoxic effects. Accumulation of manganese damages central nervous system and causes Parkinson’s disease-like syndrome called manganism. Mn neurotoxicity has been suggested to involve an imbalance between the DAergic and cholinergic systems. The pathological mechanisms associated with Mn neurotoxicity are poorly understood, but several reports have established it is mediated by changing of AChE activity that resulted in oxidative stress. Therefore we focused the effect of Mn in AChE activity in the rat’s brain by MnCl2injection intraperitoneally and analyzed their brains after time intervals. This study used different acute doses in short time course and different chronic doses at different exposing time to investigate which of them (exposing dose or time) is more important in Mn toxic effect. Results showed toxic effect of Mn is highly dose dependent and AChE activity in presence of chronic dose in 8 weeks reaches acute dose in only 2 days.


Author(s):  
Nina Pocuca ◽  
T Jordan Walter ◽  
Arpi Minassian ◽  
Jared W Young ◽  
Mark A Geyer ◽  
...  

Abstract Background Older adults (≥50 years) represent the fastest-growing population of people who use cannabis, potentially due to the increasing promotion of cannabis as medicine by dispensaries and cannabis websites. Given healthy aging and cannabis use are both associated with cognitive decline, it is important to establish the effects of cannabis on cognition in healthy aging. Objective This systematic scoping review used preferred reporting items for systematic reviews and meta-analyses guidelines to critically examine the extent of literature on this topic and highlight areas for future research. Method A search of six databases (PubMed, EMBASE, PsycINFO, Web of Science, Family and Society Studies Worldwide, and CINAHL) for articles published by September 2019, yielded 1,014 unique results. Results Six articles reported findings for older populations (three human and three rodent studies), highlighting the paucity of research in this area. Human studies revealed largely null results, likely due to several methodological limitations. Better-controlled rodent studies indicate that the relationship between ∆9-tetrahydrocannabinol (THC) and cognitive function in healthy aging depends on age and level of THC exposure. Extremely low doses of THC improved cognition in very old rodents. Somewhat higher chronic doses improved cognition in moderately aged rodents. No studies examined the effects of cannabidiol (CBD) or high-CBD cannabis on cognition. Conclusions This systematic scoping review provides crucial, timely direction for future research on this emerging issue. Future research that combines neuroimaging and cognitive assessment would serve to advance understanding of the effects of age and quantity of THC and CBD on cognition in healthy aging.


Blood ◽  
1992 ◽  
Vol 80 (2) ◽  
pp. 352-358 ◽  
Author(s):  
TP McDonald ◽  
RE Clift ◽  
MB Cottrell

Abstract Both large, acute doses of erythropoietin (EPO) and short-term hypoxia increase platelet counts in mice, but long-term hypoxia causes thrombocytopenia. Therefore, we tested the hypothesis that EPO injected in large, chronic doses (a total of 80 U of EPO over a 7-day period) might cause thrombocytopenia. EPO caused increased red blood cell (RBC) production, ie, increased hematocrits, RBC counts, mean cell volume (MCV), and reticulocyte counts (from P less than .05 to P less than .0005), and decreased thrombocytopoiesis, ie, decreased platelet counts, percent 35S incorporation into platelets, and total circulating platelet counts (TCPC) (P less than .0005). Femoral marrow megakaryocyte size was unchanged, but megakaryocyte number was significantly (P less than .005) reduced in mice treated with EPO. EPO- injected mice had increased spleen volumes (P less than .0005), but blood volumes (BV) were unchanged. In EPO-treated, splenectomized mice, RBC production was also increased (P less than .05 to P less than .0005) and platelet counts, TCPC, and percent 35S incorporation into platelets were decreased (P less than .05), but BV was not altered. Therefore, the decrease in platelet counts observed in EPO-treated mice was not due to increased BV or to an enlarged spleen. In other experiments, mice were rendered acutely thrombocytopenic to increase thrombocytopoiesis, and platelet and RBC production rates were determined. In mice with elevated thrombocytopoiesis, RBC counts, hematocrits, percent 59Fe RBC incorporation values, and MCV were decreased (P less than .05 to P less than .0005). Because 59Fe RBC incorporation and MCV were not elevated, the decrease in RBC counts and hematocrits does not appear to be due to bleeding. Therefore, we show that large, chronic doses of EPO increase erythropoiesis and decrease thrombocytopoiesis. Conversely, acute thrombocytopenia causes increased thrombocytopoiesis and decreased erythropoiesis. These findings support the hypothesis of competition between precursor cells of the erythrocytic and megakaryocytic cell lines (stem-cell competition) as the cause of thrombocytopenia in EPO-treated mice and the cause of anemia in mice whose platelet production rates were increased.


1986 ◽  
Vol 65 (12) ◽  
pp. 1406-1409 ◽  
Author(s):  
A. Richards ◽  
J. Kragstrup ◽  
K. Josephsen ◽  
O. Fejerskov

The aim of this study was to test whether dental fluorosis can be produced by administration of chronic doses of fluoride during only the post-secretory stage of enamel mineralization. Eight control and eight experimental pigs matched by weight and litter were fed a low-fluoride diet (<0.05 mg F-/kg b.w. daily) from weaning to slaughter at 14 months. The test group received an oral dose of 2 mg F -/kg b.w. per day from 8 months of age. Lower fourth pre-molars were at the post-secretory stage at the start of fluoride administration (confirmed by tetracycline marker) and were just erupting at slaughter. All of the fourth pre-molar teeth from the test group developed diffuse enamel hypomineralization indistinguishable from human fluorosis. No such lesions were seen in any of the teeth from the control animals. It was concluded that enamel fluorosis may be caused by fluoride exposure in the maturation phase only. The pathogenic mechanism may be an effect either on the selective loss of protein or on the influx of mineral, both of which occur during the post-secretory or maturation stage of enamel formation.


Blood ◽  
1992 ◽  
Vol 80 (2) ◽  
pp. 352-358 ◽  
Author(s):  
TP McDonald ◽  
RE Clift ◽  
MB Cottrell

Both large, acute doses of erythropoietin (EPO) and short-term hypoxia increase platelet counts in mice, but long-term hypoxia causes thrombocytopenia. Therefore, we tested the hypothesis that EPO injected in large, chronic doses (a total of 80 U of EPO over a 7-day period) might cause thrombocytopenia. EPO caused increased red blood cell (RBC) production, ie, increased hematocrits, RBC counts, mean cell volume (MCV), and reticulocyte counts (from P less than .05 to P less than .0005), and decreased thrombocytopoiesis, ie, decreased platelet counts, percent 35S incorporation into platelets, and total circulating platelet counts (TCPC) (P less than .0005). Femoral marrow megakaryocyte size was unchanged, but megakaryocyte number was significantly (P less than .005) reduced in mice treated with EPO. EPO- injected mice had increased spleen volumes (P less than .0005), but blood volumes (BV) were unchanged. In EPO-treated, splenectomized mice, RBC production was also increased (P less than .05 to P less than .0005) and platelet counts, TCPC, and percent 35S incorporation into platelets were decreased (P less than .05), but BV was not altered. Therefore, the decrease in platelet counts observed in EPO-treated mice was not due to increased BV or to an enlarged spleen. In other experiments, mice were rendered acutely thrombocytopenic to increase thrombocytopoiesis, and platelet and RBC production rates were determined. In mice with elevated thrombocytopoiesis, RBC counts, hematocrits, percent 59Fe RBC incorporation values, and MCV were decreased (P less than .05 to P less than .0005). Because 59Fe RBC incorporation and MCV were not elevated, the decrease in RBC counts and hematocrits does not appear to be due to bleeding. Therefore, we show that large, chronic doses of EPO increase erythropoiesis and decrease thrombocytopoiesis. Conversely, acute thrombocytopenia causes increased thrombocytopoiesis and decreased erythropoiesis. These findings support the hypothesis of competition between precursor cells of the erythrocytic and megakaryocytic cell lines (stem-cell competition) as the cause of thrombocytopenia in EPO-treated mice and the cause of anemia in mice whose platelet production rates were increased.


Sign in / Sign up

Export Citation Format

Share Document