Effects of Growth Medium and Fertilizer Rate on the Yield Response of Soybeans Exposed to Chronic Doses of Ozone

1983 ◽  
Vol 73 (2) ◽  
pp. 134 ◽  
Author(s):  
A. S. Heagle
1982 ◽  
Vol 22 (115) ◽  
pp. 62 ◽  
Author(s):  
DP Heenan ◽  
LG Lewin

Two experiments were done at the Yanco Agricultural Research Centre, New South Wales, in 1978-79 and 1979-80 to measure the response of long grain rice, cv. Inga, to rates of nitrogen applied at two different times. The highest yields were recorded when the nitrogen was applied at panicle initiation. Increasing the rate from 100 to 200 kg N/ha at panicle initiation had no effect on grain yield. When the nitrogen was applied earlier, just before permanent water, yields were highest at 50 kg N/ha and declined at the highest rates (150 and 200 kg N/ha). This negative yield response was mainly due to a drop in the percentage of filled florets, and occurred despite an increase in panicle number.


1969 ◽  
Vol 77 (3-4) ◽  
pp. 153-159
Author(s):  
Wanda I. Lugo ◽  
Héctor M. Lugo ◽  
Agenol González ◽  
Nydia Rafols ◽  
Carlos Almodóvar

In Puerto Rico yam (Dioscorea spp.) is usually planted in thoroughly tilled soils of the mountain region. An experiment was established in an Ultisol (aquic tropudults), a Vertisol (udic chromusterts) and an Oxisol tropeptic haplorthox) to study the effect of tillage and fertilizer rates on yield of the Binugas yam (Dioscorea alata L.). Three tillage treatments (conventional, deep and minimum) were compared to no-till; and three fertilizer levels (0, 1X and 2X the recommended level) were evaluated. The highest yields were observed in the conventionally tilled plots but differences among tillage treatments were significant only in the Ultisol and Vertisol soils. At these sites, yields under no-tillage were significantly lower than those under conventional tillage. No yield response to tillage was observed in the Oxisol, possibly because of the good physical condition of this soil. Response to fertilizer treatments was observed only in the Oxisol, a soil of low native fertility.


HortScience ◽  
1992 ◽  
Vol 27 (6) ◽  
pp. 614b-614 ◽  
Author(s):  
Maurice L. Vitosh ◽  
George H. Silva ◽  
Richard D. Leep ◽  
David S. Douches

A procedure for rapid determination of nitrate in the fresh petiole sap using an ion specific electrode was developed. A highly significant correlation (R2-0.92) was obtained between the nitrate measured by the sap test and the conventional oven-dried tissue method. The effects of five nitrogen(N) rates ranging from 0 to 268 kg ha-1, and five dates of sampling dates beginning at tuber initiation, on the sap nitrate concentration were investigated. The nitrate level increased in proportion to N fertilizer rate. The nitrate level was generally higher at tuber initiation and decreased as the season progressed. The rate of decrease was related to the N supply in the soil. At N rates of 0 and 67 Kg ha-1, the average weekly decrease in the nitrate level was greater than 100 ppm. Based on yield response, the nitrate levels were partitioned as deficient adequate and excessive, and a critical nutrient range was established. The sap test offers a tactical approach for corrective in-season fertilization and a means to increase the efficiency of both fertilizer and available soil N.


1988 ◽  
Vol 17 (4) ◽  
pp. 627-635 ◽  
Author(s):  
Allen S. Heagle ◽  
J. E. Miller ◽  
W. W. Heck ◽  
R. P. Patterson

Agronomy ◽  
2019 ◽  
Vol 10 (1) ◽  
pp. 15 ◽  
Author(s):  
Wenli Li ◽  
Min Yang ◽  
Jie Wang ◽  
Zhichao Wang ◽  
Zihan Fan ◽  
...  

With increasing application of nitrogen (N), phosphorus (P), and potassium (K) fertilizers, especially in China’s fruit crops, the agronomic responses of fruit crops to fertilization may be reduced with time. Thus, the quantification of these responses would be useful for establishing nutrient recommendation and fertilizer management for fruit crops. Here, a meta-analysis including 552 paired data for agronomic response and 1283 sets for amounts of optimal fertilization from 293 field studies in China were performed to systemically quantify these variations of yield response (YR), relative yield (RY), agronomic efficiency (AE), and partial factor productivity (PFP) in response to the application of N, P, or K fertilizer under different groups including fruit crop types, time, and regions. The results showed that the average YRs to N, P or K fertilizer were 7.6, 5.2, or 5.9 t ha−1, indicating related RYs of 78.0%, 82.9%, or 82.4%, respectively. All of the RYs for N, P, or K application in studies after 2000 were higher and less variable than those before 2000. Higher RYs were also shown for deciduous fruit trees when compared with evergreen fruit trees. The average AEs of N, P, and K fertilizer in China’s fruit crops were 29.1, 32.4 and 20.2 kg kg−1, all of them were negatively correlated with fertilizer rate. Due to a higher yield response and less fertilizer rate, annual crops (mainly watermelon and melons) had significantly higher AE than that of perennial crops. The average PFPs of N, P, and K fertilizer in China’s fruit crops were 129, 205, and 113 kg kg−1, all of which showed a declining trend with time. These findings demonstrated that the building-up of soil indigenous nutrient supply (indicated by RY) together with improving fruit varieties, as well as pest management and other forms of management could make external fertilization less important for increasing the yield of fruit crops in China. A rational nutrient management is therefore crucial for balancing yield and environmental concerns in countries like China, India, and other countries where fertilizers are often overused.


1996 ◽  
Vol 76 (1) ◽  
pp. 1-6 ◽  
Author(s):  
R. G. Kachanoski ◽  
G. L. Fairchild

Soil fertility may vary considerably within a field. The effects of variable soil fertility on the relationships among average crop yield response, average soil test, and fertilizer applied evenly to a field have not been examined. This paper develops stochastic equations to describe the average yield gain on a field basis from the application of a single constant rate of fertilizer, in fields with variable soil fertility. The equations are solved numerically for the specific case of nitrogen fertilizer on corn (Zea mays L.) in Ontario, Canada. The results suggest that since the relationships among yield response, soil test, and applied fertilizer are non-linear, a single soil test calibration cannot exist for fields with different spatial variability. Soil test calibrations obtained from sites with low variability (for example small plots) will not hold for sites with higher variability (for example farm fields). Calibrations obtained from sites with low variability will under-predict the optimum economic fertilizer rate for sites with low variability will under-predict the optimum economic fertilizer rate for sites with high variability. The results do not invalidate soil test calibration relationships per se. The challenge is to combine these calibrations with additional knowledge about the spatial distribution and field-scale variability of soil test values in order to maximize economic benefit. Key words: Spatial variability, soil test, fertilizer recommendation, yield, corn, field scale


1986 ◽  
Vol 15 (4) ◽  
pp. 375-382 ◽  
Author(s):  
Allen S. Heagle ◽  
W. W. Heck ◽  
V. M. Lesser ◽  
J. O. Rawlings ◽  
F. L. Mowry

2000 ◽  
Vol 80 (1) ◽  
pp. 203-212 ◽  
Author(s):  
N. Ziadi ◽  
R. R. Simard ◽  
G. Allard ◽  
G. Parent

Soil N availability is an important factor in forage grass production. Maximising N fertilizer efficiency is essential to improve profitability and to reduce the environmental risk associated with residual excess soil N. The objectives of this study were (i): to determine the effects of N fertilizer on yield, N uptake and NO3–N concentration of forage grasses produced in Western Quebec; and (ii) to compare spring soil NO3−measured by anionic exchange membranes (NO3AEMs) and by water extraction (NO3w) as a criterion to predict fertilizer N requirements of forage grasses. The yield response of grasses, especially timothy (Phleum pratense L.), to different rates of NH4NO3 (0 to 240 kg N ha−1) on heavy clay soils (Humic Gleysols) was studied from 1994 to 1996 at four sites in the Abitibi-Temiscamingue area, Quebec (Canada). Nitrogen significantly (P < 0.001) increased forage yield, N uptake, and NO3–N concentration. The economically optimum N fertilizer rate (Nop) for forage yield varied from 25 to 240 kg N ha−1 depending on sites and years, and averaged 125 kg N ha−1. The Nop can be predicted more adequately by NO3AEMs (R2 = 0.45) than by NO3w (R2 = 0.09). Based only on the relationship between the relative yield and spring soil nitrate, NO3AEMs could be used as a criterion for fertilizer N recommendation of forage grasses in this cool continental climate. Key words: N fertilizer, nitrate, grass, economically optimum N fertilizer rate


HortScience ◽  
1990 ◽  
Vol 25 (9) ◽  
pp. 1129e-1129
Author(s):  
Peter L. Minotti ◽  
Donald E. Halseth ◽  
Joseph B. Sieczka

Experiments were conducted at Freeville, NY and Riverhead, NY with 0-280 kg/ha of N banded. Tissue samples (both petioles and whole leaves) were taken 5 times starting 32 days from planting. There was a marked increase in yield and specific gravity from the first 112 kg/ha of N and in most cases from an additional 56 kg/ha of N. Both petiole and whole leaf nitrate were sensitive to changes in fertilizer rate that resulted in yield changes. We were encouraged by results obtained with “quick” tests on fresh sap since the pattern paralleled that obtained with traditional lab analysis of dried ground petioles. Although nitrate concentrations did not vary markedly across the varieties used there were substantial differences due to location even when the yield response curve was similar. Rate of N for rate of N, the Freeville samples were substantially higher in nitrate than those from Long Island, except at the 0 N rate, suggesting that the difference is not due to soil residual N.


HortScience ◽  
2004 ◽  
Vol 39 (1) ◽  
pp. 75-79
Author(s):  
John M. Swiader ◽  
William H. Shoemaker

Field experiments were conducted over a 5-year period (1994-98) to determine the effect of various cropping systems (rotations) on fertilizer N requirements in processing pumpkins [Cucurbita moschata (Duchesne ex Lam.) Duchesne ex Poir.] on medium- to fine-textured soil. Treatments consisted of a factorial combination of five N fertilization rates (0, 56, 112, 168, 224 kg·ha-1 N) and four pumpkin cropping systems: 1) pumpkins following corn (Zea mays L.); 2) pumpkins following soybeans [Glycine max (L.) Merrill]; 3) pumpkins following 2-years corn; and 4) pumpkins following fallow ground. Cropping systems were chronologically and spatially arranged in two complete cycles, with pumpkin studies taking place in 1996 and 1998. Averaged over the two studies, the optimal N fertilization rate for highest total weight of ripe fruit following soybeans was estimated at 109 kg·ha-1 N, compared to 128 kg·ha-1 N following fallow ground, even though yields were similar, suggesting a soybean N-credit of 19 kg·ha-1 N. Concurrently, the N fertilizer rate for highest total ripe fruit weight following corn was estimated at 151 kg·ha-1 N, and 178 kg·ha-1 following 2-years corn, indicating a negative rotation effect on pumpkin N requirements of 23 and 50 kg·ha-1 N, respectively. Minimum N fertilizer requirements, the N fertilizer rate associated with a ripe fruit yield of 50 t·ha-1, were calculated at 45, 37, 69, and 47 kg·ha-1 N in the respective cropping systems. Negative effects from excessive N fertilization were greater in pumpkins following soybeans than in pumpkins following corn or 2-years corn, with reductions in total ripe fruit weight of 21%, 9%, and 3%, respectively, at the highest N rate. A critical level for preplant soil NO 3-N of 17.6 mg·kg-1 was identified above which there was little or no pumpkin yield response to N fertilization.


Sign in / Sign up

Export Citation Format

Share Document