First Report of Coat Protein Sequence of Cucumber Green Mottle Mosaic Virus in Cucumber Isolated from Khorasan in Iran

2010 ◽  
Vol 7 (1) ◽  
pp. 1-12 ◽  
Author(s):  
Zohreh Moradi ◽  
Behrooz Jafarpour
2007 ◽  
Vol 152 (11) ◽  
pp. 2125-2129 ◽  
Author(s):  
B. Massey ◽  
X. Cui ◽  
E. Hiebert ◽  
M. S. Elliott ◽  
N. Waipara ◽  
...  

Plant Disease ◽  
2006 ◽  
Vol 90 (11) ◽  
pp. 1457-1457 ◽  
Author(s):  
N. Sudhakar ◽  
D. Nagendra-Prasad ◽  
N. Mohan ◽  
K. Murugesan

During a survey in January 2006 near Salem in Tamil Nadu (south India), Cucumber mosaic virus was observed infecting tomatoes with an incidence of more than 70%. Plants exhibiting severe mosaic, leaf puckering, and stunted growth were collected, and the virus was identified using diagnostic hosts, evaluation of physical properties of the virus, compound enzyme-linked immunosorbent assay (ELISA) (ELISA Lab, Washington State University, Prosser), reverse-transcription polymerase chain reaction (RT-PCR), and restriction fragment length polymorphism analysis (DSMZ, S. Winter, Germany). To determine the specific CMV subgroup, total RNA was extracted from 50 infected leaf samples using the RNeasy plant RNA isolation kit (Qiagen, Hilden, Germany) and tested for the presence of the complete CMV coat protein gene using specific primers as described by Rizos et al. (1). A fragment of the coat protein was amplified and subsequently digested with MspI to reveal a pattern of two fragments (336 and 538 bp), indicating CMV subgroup II. No evidence of mixed infection with CMV subgroup I was obtained when CMV isolates representing subgroups I (PV-0419) and II (PV-0420), available at the DSMZ Plant Virus Collection, were used as controls. Only CMV subgroup I has been found to predominantly infect tomato in the Indian subcontinent, although Verma et al. (2) identified CMV subgroup II infecting Pelargonium spp., an ornamental plant. To our knowledge, this is the first report of CMV subgroup II infecting tomato crops in India. References: (1) H. Rizos et al. J. Gen. Virol. 73:2099, 1992. (2) N. Verma et al. J. Biol. Sci. 31:47, 2006.


Plant Disease ◽  
2010 ◽  
Vol 94 (3) ◽  
pp. 372-372 ◽  
Author(s):  
N. L. Robertson ◽  
K. L. Brown

In mid-June 2008, distinct mosaic leaves were observed on a cluster of clover (Trifolium spp.) with light pink and white flowers growing at the edge of a lawn in Palmer, AK. Virus minipurification from leaves of affected clover and protein extractions on a polyacrylamide electrophoresis implicated a ~35-kDa putative coat protein (CP). Subsequent western blots and ELISA with a universal potyvirus antiserum (Agdia Inc., Elkhart, IN) confirmed potyvirus identity. Total RNA extracts (RNeasy Plant Mini Kit, Qiagen Inc., Valencia, CA) from the same plant were used for reverse transcription (RT)-PCR. Three sets of degenerate primers that targeted potyvirus-specific genes, HC-Pro (helper component protease) and CI (cylindrical inclusion protein) and the genomic 3′-terminus that included a partial NIb (nuclear inclusion), CP (coat protein), and UTR (untranslated region), produced the expected PCR segments (~0.7, ~0.7, and ~1.6 kbp, respectively) on 1% agarose gels (1). Direct sequencing of the HC-Pro (GenBank No. GQ181115), CI (GQ181116), and CP (GU126690) segments revealed 98, 97, and 99% nucleotide identities (no gaps), respectively, to Bean yellow mosaic virus (BYMV)-chlorotic spot (CS) strain, GenBank No. AB373203. The next closest BYMV percent identity comparisons decreased to 79% for HC-Pro (GenBank No. DQ641248; BYMV-W), 79% for CI (U47033; BYMV-S) partial genes, and 96% for CP (AB041971; BYMV-P242). Mechanical inoculations of purified virus preparations produced local lesions on Chenopodium amaranticolor Coste & A. Reyn. (2 of 5) and C. quinoa Willd. (6 of 7), and mosaic on Nicotiana benthamiana Domin (5 of 5). BYMV was specifically confirmed on tester plants using a double-antibody sandwich (DAS)-ELISA BYMV (strain 204 and B25) kit (AC Diagnostics, Inc., Fayetteville, AR) as directed. The absence of another potyvirus commonly found in clover, Clover yellow vein virus (ClYVV), was verified in parallel DAS-ELISA ClYVV assays (AC Diagnostics, Inc). The BYMV isolate was maintained in N. benthamiana, and virion or sap extracts inoculated to the following host range (number of infected/total inoculated plants [verified by BYMV ELISA]): Cucumis sativus L. ‘Straight Eight’ (0/5), Gomphrena globosa L. (1/4), Nicotiana clevelandii A. Gray (4/7), Phaseolus vulgaris L. ‘Bountiful’ (1/3), Pisum sativum L. (Germplasm Resources Information Network Accession Nos. -PI 508092 (8/12), -W6 17525 (13/13), -W6 17529 (0/13), -W6 17530 (13/14), -W6 17537 (0/12), -W6 17538 (0/12), and -W6 17539 (0/21), Tetragonia tetragoniodes (2/2), Trifolium pretense L. ‘Altaswede’ (6/10), T. repens L. ‘Pilgrim’ (0/8), and Vicia faba L. (1/3). All infected plants had symptoms ranging from systemic mosaic (T. pretense, P. sativum) to leaf distortions (N. clevelandii, Tetragonia tetragoniodes). Interestingly, the host range and genomic sequences of the BYMV Alaskan strain resemble the BYMV-CS (chlorotic spot) strain that was originally isolated from a diseased red clover (T. pretense) plant in Japan more than 40 years ago (2). Although BYMV occurs worldwide and has a wide host range in dictoyledonous and monocotyledonous plants (3), to our knowledge, this is the first report of a natural occurrence of BYMV in Alaska. The incidence and distribution of BYMV in clover and other plant species are not known in Alaska. References: (1) C. Ha et al. Arch. Virol. 153:36, 2008. (2) H. Kume et al. Mem. Fac. Agric. Hokkaido Univ. 7:449, 1970. (3) S. J. Wylie et al. Plant Dis. 92:1596, 2008.


Sign in / Sign up

Export Citation Format

Share Document