Coat protein sequence comparisons of three Mexican isolates of papaya ringspot virus with other geographical isolates reveal a close relationship to American and Australian isolates

2000 ◽  
Vol 145 (4) ◽  
pp. 835-843 ◽  
Author(s):  
L. Silva-Rosales ◽  
N. Becerra-Leor ◽  
S. Ruiz-Castro ◽  
D. Téliz-Ortiz ◽  
J. C. Noa-Carrazana
Plant Disease ◽  
2004 ◽  
Vol 88 (5) ◽  
pp. 516-522 ◽  
Author(s):  
Gustavo Fermin ◽  
Valentina Inglessis ◽  
Cesar Garboza ◽  
Sairo Rangel ◽  
Manuel Dagert ◽  
...  

Local varieties of papaya grown in the Andean foothills of Mérida, Venezuela, were transformed independently with the coat protein (CP) gene from two different geographical Papaya ringspot virus (PRSV) isolates, designated VE and LA, via Agrobacterium tumefaciens. The CP genes of both PRSV isolates show 92 and 96% nucleotide and amino acid sequence similarity, respectively. Four PRSV-resistant R0 plants were intercrossed or selfed, and the progenies were tested for resistance against the homologous isolates VE and LA, and the heterologous isolates HA (Hawaii) and TH (Thailand) in greenhouse conditions. Resistance was affected by sequence similarity between the transgenes and the challenge viruses: resistance values were higher for plants challenged with the homologous isolates (92 to 100% similarity) than with the Hawaiian (94% similarity) and, lastly, Thailand isolates (88 to 89% similarity). Our results show that PRSV CP gene effectively protects local varieties of papaya against homologous and heterologous isolates of PRSV.


1992 ◽  
Vol 10 (11) ◽  
pp. 1466-1472 ◽  
Author(s):  
Maureen M. M. Fitch ◽  
Richard M. Manshardt ◽  
Dennis Gonsalves ◽  
Jerry L. Slightom ◽  
John C. Sanford

Plant Disease ◽  
2014 ◽  
Vol 98 (12) ◽  
pp. 1748-1748 ◽  
Author(s):  
M. Naeimifar ◽  
R. Pourrahim ◽  
G. Zadehdabagh

Papaya ringspot virus (PRSV, genus Potyvirus, family Potyviridae) is economically important due to its worldwide distribution and because it can cause serious losses in both cucurbit crops and papaya (3). PRSV has been previously reported from cucurbit crops in Iran (2). In Khuzestan Province, southwest Iran, cucurbit crops, including cucumber, melon, squash, pumpkin, and watermelon, are grown on about 30,000 ha with 720,000 t production annually. To identify possible alternative hosts that may serve as PRSV reservoirs, samples of 36 different common weed species (17 symptomatic and 19 asymptomatic) including Amaranthus sp. (slim amaranth), Carthamus sp. (safflower), Chenopodium album L. (lamb squarters), Citrullus colocynthis (L.) Schrad (colocynth), Convolvulus arvensis L. (field bindweed), Datura stramonium L. (jimson weed), Euphorbia sp. (wart weed), Malva sylvestirs L. (common malva), Solanum nigrum L. (black nightshade), and Sonchus asper (L.) Hill (prickly sow-thistle) were collected in cucurbit open fields during 2012 to 2013 in Khuzestan Province, where PRSV symptoms were observed. Symptoms on weed samples included mottling, mosaic, blistering, cholorosis, vein clearing, interveinal yellowing, yellows, necrosis, leaf distortion, and curling. Samples were tested by DAS-ELISA with specific antisera against PRSV using reagents from Bioreba (Switzerland). Three of the 36 weed samples belonging to C. colocynthis (Cucurbitaceae) with mottling and chlorosis symptoms were positive for PRSV by ELISA. Leaf extracts from PRSV ELISA-positive samples were mechanically inoculated onto indicator host plants, causing local lesions on Chenopodium amaranticolor and systemic symptoms on Cucumis melo, Cucumis sativus, and Cucurbita pepo, but could not produce symptoms on Nicotiana glutinosa, N. tabacum cv. White Burley, or N. tabacum cv. Xanthi. Total RNA was extracted from infected leaves using Tri-reagent (Sigma) and first-strand cDNA synthesis was performed using M-MuLV reverse transcriptase (Fermentas, Lithuania), according to the manufacturer's instructions. The presence of PRSV was confirmed by RT-PCR using primers for the complete coat protein (CP) gene of PRSV-W (forward 5′-GCAGCAATGATAGAGTCATG-3′ and reverse 5′-AACACACAAGCGCGAGTATTCA-3′) (1). The complete CP nucleotide sequence of three Iranian PRSV isolates consisted of 864 nt, coding for a 288 amino acid (aa) protein. Subsequent analysis showed that the CP nucleotide sequences of Iranian isolates (GenBank Accession Nos. KM047884 to KM047886) from C. colocynthis samples were identical. Furthermore, BLAST analysis of the nucleotide sequence comparisons revealed that the Iranian isolates shared the highest identity (96%) with the Chinese PRSV isolate (DQ449533). PRSV-W has been previously reported from different cucurbits using serological and biological detection (2); however, this result provides the first molecular demonstration, to our knowledge, of PRSV-W on C. colocynthis. C. colocynthis is a perennial weed in West and South Iran. This information on the natural infection of C. colocynthis with PSRV-W will help to better understand PRSV epidemiology and to develop a successful management program for reducing the impact of this disease. References: (1) A. Ali et al. Plant Dis. 96:243, 2012. (2) K. Bananej and A. Vahdat. Phytopathol. Mediterr. 47:247, 2008. (3) D. J. Purcifull et al. CMI/AAB Descriptions of Plant Viruses. No. 292, 1984.


2003 ◽  
Vol 28 (6) ◽  
pp. 678-681 ◽  
Author(s):  
Marilia G. S. Della Vecchia ◽  
Luis E. A. Camargo ◽  
Jorge A. M. Rezende

This study compared three mild and three severe strains of Papaya ringspot virus - type W (PRSV-W), based on nucleotide and amino acid sequences of the capsid protein (CP) gene. The CP nucleotide sequences of the mild strains shared 98% to 100% identity. When compared to the severe strains the identity ranged from 93% to 95%, except in the case of PRSV-W-2R, which resulted from reversion of the mild strains PRSV-W-2. The CP sequence of the reverting strain showed 100% identity with the sequence of its parental strain. An insertion of six nucleotides in the core region of the CP gene, which reflected the addition of two amino acids (Asn and Asp) in the deduced sequence of the protein, was found in all mild strains. These sequence comparisons were used to design strain-specific primers that were used to specifically amplify regions for either the mild or severe strains.


Viruses ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 1235
Author(s):  
Keith Saunders ◽  
Jake Richardson ◽  
David M. Lawson ◽  
George P. Lomonossoff

Geminivirus particles, consisting of a pair of twinned isometric structures, have one of the most distinctive capsids in the virological world. Until recently, there was little information as to how these structures are generated. To address this, we developed a system to produce capsid structures following the delivery of geminivirus coat protein and replicating circular single-stranded DNA (cssDNA) by the infiltration of gene constructs into plant leaves. The transencapsidation of cssDNA of the Begomovirus genus by coat protein of different geminivirus genera was shown to occur with full-length but not half-length molecules. Double capsid structures, distinct from geminate capsid structures, were also generated in this expression system. By increasing the length of the encapsidated cssDNA, triple geminate capsid structures, consisting of straight, bent and condensed forms were generated. The straight geminate triple structures generated were similar in morphology to those recorded for a potato-infecting virus from Peru. These finding demonstrate that the length of encapsidated DNA controls both the size and stability of geminivirus particles.


2011 ◽  
Vol 59 (18) ◽  
pp. 10006-10012 ◽  
Author(s):  
Gustavo Fermín ◽  
Ronald C. Keith ◽  
Jon Y. Suzuki ◽  
Stephen A. Ferreira ◽  
Douglas A. Gaskill ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document