Soil Compaction Due to Sugarcane (Saccharum officinarum) Mechanical Harvesting and the Effects of Subsoiling on the Improvement of Soil Physical Properties

2007 ◽  
Vol 7 (23) ◽  
pp. 3639-3648 ◽  
Author(s):  
A.A. Naseri ◽  
S. Jafari ◽  
M. Alimohamma
1986 ◽  
Vol 16 (4) ◽  
pp. 750-754 ◽  
Author(s):  
John R. Donnelly ◽  
John B. Shane

Soil and vegetation responses to artificially imposed surface compaction and the effects of bark mulch on these responses were monitored for a 5-year period within a Quercusalba L. – Quercusvelutina Lam. – Quercusrubra L. forest growing on a loamy sand in northwestern Vermont. Compaction resulted in significant changes in vegetation and soil physical properties. Soil bulk density, soil penetration resistance, surface soil moisture, and soil temperature increased following compaction; infiltration capacity and the radial growth of Acerrubrum L. and Q. velutina decreased. Application of bark mulch prior to compaction tended to reduce compaction effects. Postcompaction additions of bark mulch did not result in noticeable amelioration of compaction-induced changes 2 years after application.


Agronomy ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 1697
Author(s):  
Matthieu Forster ◽  
Carolina Ugarte ◽  
Mathieu Lamandé ◽  
Michel-Pierre Faucon

Compaction due to traffic is a major threat to soil functions and ecosystem services as it decreases both soil pore volume and continuity. The effects of roots on soil structure have previously been investigated as a solution to alleviate compaction. Roots have been identified as a major actor in soil reinforcement and aggregation through the enhancement of soil microbial activity. However, we still know little about the root’s potential to protect soil from compaction during traffic. The objective of this study was to investigate the relationships between root traits and soil physical properties directly after traffic. Twelve crop species with contrasting root traits were grown as monocultures and trafficked with a tractor pulling a trailer. Root traits, soil bulk density, water content and specific air permeability were measured after traffic. The results showed a positive correlation between the specific air permeability and root length density and a negative correlation was found between bulk density and the root carbon/nitrogen ratio. This study provides first insight into how root traits could help reduce the consequences of soil compaction on soil functions. Further studies are needed to identify the most efficient plant species for mitigation of soil compaction during traffic in the field.


CORD ◽  
2000 ◽  
Vol 16 (01) ◽  
pp. 34
Author(s):  
L P Vidhana Arachchi ◽  
Yaspa P A J ◽  
Mapa R B ◽  
Somapala H.

The objective of the study was to (1) evaluate land suitability for coconut (cocos nucifera L.) production in relation to soil physical properties, (2) identify the soil physical constraints and (3) study their effect on the morphological adaptation of coconut roots. Soil physical properties were found to be significantly related to coconut yield (R2=81.37; p<0.01). Multiple regression with cluster analysis of soil physical properties vs coconut yield enabled classification of soil series into three major groups namely (a) highly  (b) moderately and (c) less productive series. It was observed that the high soil compaction which limited the available water and aeration capacity of soils resulted in retardation of the activity of coconut roots. Water stress due to soil compaction was found to induce production of more inactive roots by suberization and dehydration processes. Scanning electron microscopic image showed that soil compaction and water stress, reduced the cell volume per unit area  of the absorption zone and the number of pores in respiratory organs of  coconut roots resulting in retardation of water and nutrient absorption, and air exchange processes. This in turn malfunctions of absorption cells and respiratory organs of roots resulted in retardation of growth of coconut seedlings. The practical importance of these findings in formulation of land suitability maps for coconuts is discussed.


1995 ◽  
Vol 19 (2) ◽  
pp. 72-77 ◽  
Author(s):  
W. Michael Aust ◽  
Mark D. Tippett ◽  
James A. Burger ◽  
William H. McKee

Abstract Soil compaction and rutting (puddling) are visually distinct types of wet-site harvesting disturbances; however, the way in which they affect soil physical properties and hydrology is not well documented. Three compacted and three rutted sites were evaluated to determine the effects of the disturbances on soil physical and hydrologic properties. For each site, primary skid trails and nontrafficked areas were compared. Both compaction and rutting increased bulk density, and reduced macropore space and saturated hydraulic conductivity. Water tables and reducing conditions were closer to the soil surface within the primary skid trails. For the compacted and rutted skid trails, changes were greatest on sites that initially had better drainage and aeration. Compacted sites may prove easier to mitigate with site preparation than rutted sites due to the shallower nature of the disturbances and drier site conditions that will facilitate mechanical mitigation. Submitted to South. J. Appl. For. 18(2):72-77.


Soil Research ◽  
1984 ◽  
Vol 22 (3) ◽  
pp. 343 ◽  
Author(s):  
ST Willatt ◽  
DM Pullar

Soil compaction caused by animal treading in grazing of pastures has not been considered a serious problem in Australian soils. However, recent circumstantial evidence suggests that in northern Victoria compaction does occur. In an experiment conducted at the Hamilton Pastoral Research Station (western Victoria) in 1973, grazed pastures with various stocking rates showed increases in bulk density and bearing capacity of the soil, and decreases in hydraulic conductivity occurred with increasing stocking rate. Some change in pasture composition was also noted.


Soil Research ◽  
2004 ◽  
Vol 42 (7) ◽  
pp. 851 ◽  
Author(s):  
J. J. Drewry ◽  
R. J. Paton ◽  
R. M. Monaghan

This paper quantifies soil compaction and natural recovery of soil physical properties during a 3-year trial on a dairy farm in Southland, New Zealand. The study investigated the magnitude of soil compaction over spring, and natural recovery of soil physical properties over summer and autumn. Changes in soil physical condition were measured while pastures were intermittently grazed by lactating dairy cows, and also over winter when cows were removed from pasture. Soil bulk density at 0–5 cm increased (P < 0.001) during spring by up to 0.20 Mg/m3. During spring 2000, macroporosity (volumetric % of pores >30 μm) at 0–5 cm decreased (P < 0.001) from 13.5 to 7.5%, with similar trends in spring 2002. Many of the soil physical properties showed significant recovery over summer and autumn. Bulk density decreased (P < 0.001) by 0.09 Mg/m3, from December 2001 to May 2002. Soil macroporosity also recovered markedly during summer and autumn. Macroporosity increased (P < 0.001) from 12.5% in December 2001 to 18% in May 2002. Significant changes in soil compaction and recovery were also measured at 5–10 cm depth. For many soil physical properties, recovery over winter was much less than over summer and autumn. Implications of the compaction and recovery cycle are discussed in terms of measurement protocols appropriate to routine monitoring of soil physical condition.


2001 ◽  
Vol 41 (8) ◽  
pp. 1231 ◽  
Author(s):  
K. L. Greenwood ◽  
B. M. McKenzie

Grazing animals exert pressure on the ground comparable to that of agricultural machinery. As a result, soil under pasture can be compacted. In grazing systems based on permanent pastures or rangelands, there is little opportunity to ameliorate poor soil physical conditions through tillage. Hence, it is important to understand the effects of grazing on soil physical properties and the consequent effects of these properties on pasture growth and composition. Most soils under grazed pasture, even those managed to minimise soil physical degradation, will be compacted to some extent. However, the magnitude of this compaction is usually small, and limited to the upper 50–150 mm of the soil. Compaction to greater depth, and other changes in soil physical properties, are more likely in recently tilled or wet soils. The response of pasture to the poorer soil conditions caused by grazing is difficult to determine, but it is likely to be small compared with the defoliation effects of grazing. Maintenance of a vigorous pasture should be a major aim of grazing management and would also achieve the secondary aim of maintaining acceptable soil physical conditions.


Sign in / Sign up

Export Citation Format

Share Document