Forest ecosystem responses to artificially induced soil compaction. I. Soil physical properties and tree diameter growth

1986 ◽  
Vol 16 (4) ◽  
pp. 750-754 ◽  
Author(s):  
John R. Donnelly ◽  
John B. Shane

Soil and vegetation responses to artificially imposed surface compaction and the effects of bark mulch on these responses were monitored for a 5-year period within a Quercusalba L. – Quercusvelutina Lam. – Quercusrubra L. forest growing on a loamy sand in northwestern Vermont. Compaction resulted in significant changes in vegetation and soil physical properties. Soil bulk density, soil penetration resistance, surface soil moisture, and soil temperature increased following compaction; infiltration capacity and the radial growth of Acerrubrum L. and Q. velutina decreased. Application of bark mulch prior to compaction tended to reduce compaction effects. Postcompaction additions of bark mulch did not result in noticeable amelioration of compaction-induced changes 2 years after application.

Soil Research ◽  
2004 ◽  
Vol 42 (7) ◽  
pp. 851 ◽  
Author(s):  
J. J. Drewry ◽  
R. J. Paton ◽  
R. M. Monaghan

This paper quantifies soil compaction and natural recovery of soil physical properties during a 3-year trial on a dairy farm in Southland, New Zealand. The study investigated the magnitude of soil compaction over spring, and natural recovery of soil physical properties over summer and autumn. Changes in soil physical condition were measured while pastures were intermittently grazed by lactating dairy cows, and also over winter when cows were removed from pasture. Soil bulk density at 0–5 cm increased (P < 0.001) during spring by up to 0.20 Mg/m3. During spring 2000, macroporosity (volumetric % of pores >30 μm) at 0–5 cm decreased (P < 0.001) from 13.5 to 7.5%, with similar trends in spring 2002. Many of the soil physical properties showed significant recovery over summer and autumn. Bulk density decreased (P < 0.001) by 0.09 Mg/m3, from December 2001 to May 2002. Soil macroporosity also recovered markedly during summer and autumn. Macroporosity increased (P < 0.001) from 12.5% in December 2001 to 18% in May 2002. Significant changes in soil compaction and recovery were also measured at 5–10 cm depth. For many soil physical properties, recovery over winter was much less than over summer and autumn. Implications of the compaction and recovery cycle are discussed in terms of measurement protocols appropriate to routine monitoring of soil physical condition.


Soil Research ◽  
1998 ◽  
Vol 36 (6) ◽  
pp. 1057 ◽  
Author(s):  
R. D. Connolly ◽  
D. M. Freebairn ◽  
M. J. Bell

Cropping systems in south-eastern Queensland have led to degradation of soil physical properties and loss of infiltration capacity. Pasture leys are favoured for ameliorating soil physical properties because they add organic matter to the soil, create macroporosity, and help to re-aggregate soil. We measured change in hydraulic conductivity with period of ley for 5 major soil groups in south-eastern Queensland (Sodosols, light and heavy Vertosols, Red Ferrosols, and Red Chromosols/Kandosols). We characterised 2 soil layers that are susceptible to degradation when cropped: surface soil exposed to raindrop impact, and the layer immediately below the cultivated layer (0·1-0·2 m deep). A rainfall simulator was used to measure hydraulic conductivity of surface seals under high intensity rainfall. Disc permeameters and pressure plate apparatus were used to measure hydraulic conductivity of the soil matrix in the 0·1-0·2 m layer. Hydraulic conductivity of both soil layers improved with period of pasture for all but the light-textured Red Chromosols/Kandosols. The estimated period of pasture required to return hydraulic conductivity to pre-cultivated levels ranged from 5 to 40 years, depending on soil type and layer. This is about 2-3 times the period of cultivation that caused the degradation. Grazing reduced the effectiveness of pasture in ameliorating surface sealing on Sodosols. Beneficial effects of a 2·5-4·5 year, ungrazed ley pasture on surface soil persisted for up to 5 years after recultivation, but were lost in the 0·1-0·2 m layer within 1 year. These rates of decline in hydraulic conductivity were faster than observed on previously uncultivated soils. The APSIM model was used to predict the effect of measured improvements in soil hydraulic conductivity on average runoff from summer fallows. The model predicted that most benefits for fallow runoff would be achieved with 2-5 years of ley. The surface seal was the major limitation to infiltration when the soil was bare. Subsurface soil layers limited infiltration if surface sealing was reduced by ameliorating soil properties or maintaining cover on the soil surface. The results suggest that despite amelioration of soil structure with leys, appropriate tillage and cover management is still required to maintain high infiltration rates.


2019 ◽  
Vol 40 (2) ◽  
pp. 341-350
Author(s):  
Ahmad Solgi ◽  
Ramin Naghdi ◽  
Eric K. Zenner ◽  
Petros A. Tsioras ◽  
Vahid Hemmati

Effective skid-trail design requires a solid understanding of vehicle-soil interactions, yet virtually no data exist on the effects of harvest traffic on soils in the switchback curves common in mountainous terrain. We contrast for the first time the effect of skidding on dry bulk density, total porosity, macroporosity, and microporosity in the straight segments of the skid trail and in various positions within switchbacks of differing trail curvature (deflection angle) on different slope gradients. Treatment plots with three replications included combinations of two classes of curvature (narrow = high deflection angle, 60–70°; wide = low deflection angle, 110–130°) and two categories of slope gradient (gentle = ≤20%; steep = &gt;20%). The Cambisol soil was sampled in control and trafficked areas both before and after three passes with a rubber-tired skidder. After only three passes, significant effects were seen for dry soil bulk density (+), total porosity (–), macroporosity (–), and microporosity (+), with steady trends from undisturbed controls to straight segments to wide curves to narrow curves. Soil damage increased gradually and consistently toward the apex of the curve, particularly in narrow curves on gentle slopes. Our results establish that curvature and switchback position are important factors affecting soil compaction in ground skidding. The strong observed effects of even low harvest traffic volume on soil physical properties in curves indicate that the degree of soil compaction in skid trails may be underestimated in areas with numerous switchbacks, the placement of which within a skid trail system may require careful consideration on mountainous terrain.


1990 ◽  
Vol 114 (3) ◽  
pp. 301-307 ◽  
Author(s):  
N. R. Hulugalle ◽  
B. T. Kang

SUMMARYEffects of hedgerow species on surface soil physical properties were studied in an on-going trial established since 1981 on an Oxic Paleustalf in southwestern Nigeria. The experimental treatments wereLeucaena leucocephala, Gliricidia sepium, Alchornea cordifoliaandAcioa barteriihedgerows planted at 4 m interhedgerow spacings and a control (no hedgerows). Plots were sequentia-ly cropped with maize (Zea mays) and cowpea (Vigna unguiculata). Soil physical properties, i.e. particle size distribution, bulk density, apparent pore size distribution and water infiltration, were monitored during the dry season in January and the main growing season in June 1989. Soil temperature was monitored at approximately monthly intervals from February to June 1989. Soil properties of alleycropped plots were superior to those of the control. Soil compaction was highest in the control and lowest withL. leucocephala. Between the hedgerow species, within-season increases in soil compaction were largest withA. cordifolia. Lowest soil temperatures were observed withL. leucocephalaandA. barterii. Frequency, quantity and quality of prunings produced by the hedgerow species appeared to have a major beneficial effect on soil physical properties.


2011 ◽  
Vol 91 (6) ◽  
pp. 957-964 ◽  
Author(s):  
C. Halde ◽  
A. M. Hammermeister ◽  
N. L. Mclean ◽  
K. T. Webb ◽  
R. C. Martin

Halde, C., Hammermeister, A. M., McLean, N. L., Webb, K. T. and Martin, R. C. 2011. Soil compaction under varying rest periods and levels of mechanical disturbance in a rotational grazing system. Can. J. Soil Sci. 91: 957–964. In Atlantic Canada, data are limited regarding the effect of grazing systems on soil compaction. The objective of the study was to determine the effect of intensive and extensive rotational pasture management treatments on soil bulk density, soil penetration resistance, forage productivity and litter accumulation. The study was conducted on a fine sandy loam pasture in Truro, Nova Scotia. Each of the eight paddocks was divided into three rotational pasture management treatments: intensive, semi-intensive and extensive. Mowing and clipping were more frequent in the intensive than in the semi-intensive treatment. In the extensive treatment, by virtue of grazing in alternate rotations, the rest period was doubled than that of the intensive and semi-intensive treatments. Both soil bulk density (0–5 cm) and penetration resistance (0–25.5 cm) were significantly higher in the intensive treatment than in the extensive treatment, for all seasons. Over winter, bulk density decreased significantly by 6.8 and 3.8% at 0–5 and 5–10 cm, respectively. A decrease ranging between 40.5 and 4.0% was observed for soil penetration resistance over winter, at 0–1.5 cm and 24.0–25.5 cm, respectively. The intensive and semi-intensive treatments produced significantly more available forage for grazers annually than the extensive treatment. Forage yields in late May to early June were negatively correlated with spring bulk density.


2006 ◽  
Vol 11 (2) ◽  
pp. 17-24 ◽  
Author(s):  
Bam Haja Nirina Razafindrabe ◽  
Venecio U. Ultra ◽  
Osamu Kobayashi ◽  
Mitsuo Fujiwara ◽  
Shoji Inoue ◽  
...  

Agronomy ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 1697
Author(s):  
Matthieu Forster ◽  
Carolina Ugarte ◽  
Mathieu Lamandé ◽  
Michel-Pierre Faucon

Compaction due to traffic is a major threat to soil functions and ecosystem services as it decreases both soil pore volume and continuity. The effects of roots on soil structure have previously been investigated as a solution to alleviate compaction. Roots have been identified as a major actor in soil reinforcement and aggregation through the enhancement of soil microbial activity. However, we still know little about the root’s potential to protect soil from compaction during traffic. The objective of this study was to investigate the relationships between root traits and soil physical properties directly after traffic. Twelve crop species with contrasting root traits were grown as monocultures and trafficked with a tractor pulling a trailer. Root traits, soil bulk density, water content and specific air permeability were measured after traffic. The results showed a positive correlation between the specific air permeability and root length density and a negative correlation was found between bulk density and the root carbon/nitrogen ratio. This study provides first insight into how root traits could help reduce the consequences of soil compaction on soil functions. Further studies are needed to identify the most efficient plant species for mitigation of soil compaction during traffic in the field.


1988 ◽  
Vol 5 (2) ◽  
pp. 120-123 ◽  
Author(s):  
Stephen G. Shetron ◽  
John A. Sturos ◽  
Eunice Padley ◽  
Carl Trettin

Abstract The change in wheel track surface soil bulk densities was determined after a mechanized thinning in a northern red oak stand. Mean bulk density values of the 0 to 5 cm surface of the wheel tracks immediately after felling, bunching, and skidding were: 0.80 g/cc on the high use areas; 0.77 g/cc on the low use areas; and 0.42 g/cc in the undisturbed areas. No significant differences in surface soil bulk densities were found between several loading treatments using a four-wheel drive articulated forwarder. The data indicate that initial passes of the equipment produce most of the disturbance. No significant recovery in wheel track soil bulk densities occurred during the year following harvest regardless of treatment. North. J. Appl. For. 5:120-123, June 1988.


2020 ◽  
Author(s):  
Tomoki Oda ◽  
Megumi Kuroiwa ◽  
Naoya Fujime ◽  
Kazuo Isobe ◽  
Naoya Masaoka ◽  
...  

&lt;p&gt;Ammonium (NH&lt;sub&gt;4&lt;/sub&gt;&lt;sup&gt;+&lt;/sup&gt;) and nitrate (NO&lt;sub&gt;3&lt;/sub&gt;&lt;sup&gt;&amp;#8211;&lt;/sup&gt;) concentrations and production rates in forest soil vary by hillslope position due to variation in ammonia-oxidizing microorganism concentrations, soil chemistry, and surface soil moisture. These spatial distributions have a significant effect on nutrient cycles and streamwater chemistry. Soil moisture conditions significantly restrict microbial activity, influencing the spatial distribution of NO&lt;sub&gt;3&lt;/sub&gt;&lt;sup&gt;&amp;#8211;&lt;/sup&gt; concentrations on forest hillslopes. However, studies linking forest hydrological processes to nitrogen cycling are limited. Therefore, we investigated the determinants of spatial variation in soil moisture and evaluated the effects of soil moisture fluctuations on spatial variation in NO&lt;sub&gt;3&lt;/sub&gt;&lt;sup&gt;&amp;#8211;&lt;/sup&gt; concentration and production rate.&lt;/p&gt;&lt;p&gt;The study sites were the Fukuroyamasawa Experimental Watershed (FEW) and Oyasan Experimental Watershed (OEW) in Japan. The two have similar topographies, climates, and tree species. In each watershed, a 100 m transect was set up from the ridge to the base of the slope, and soil moisture sensors were installed at soil depths of 10 cm and 30 cm at both the top and bottom of the slope. We collected surface soil samples at a depth of 10 cm at the top, middle, and bottom of the slopes using 100 cm&lt;sup&gt;3&lt;/sup&gt; cores, and measured soil physical properties, particle size distribution, volcanic ash content, chemical properties (pH, NO&lt;sub&gt;3&lt;/sub&gt;&lt;sup&gt;&amp;#8211;&lt;/sup&gt;, NH&lt;sub&gt;4&lt;/sub&gt;&lt;sup&gt;+&lt;/sup&gt;, nitrification rate, and mineralization rate), and microbial content (archaeal content). Spatial and temporal changes in soil moisture on the hillslope were calculated using HYDRUS-2D to examine contributing factors of soil moisture.&lt;/p&gt;&lt;p&gt;At FEW, high NO&lt;sub&gt;3&lt;/sub&gt;&lt;sup&gt;&amp;#8211;&lt;/sup&gt; concentrations and nitrification rates were observed only at the slope bottom and middle, and no NO&lt;sub&gt;3&lt;/sub&gt;&lt;sup&gt;&amp;#8211;&lt;/sup&gt; concentrations were detected at up slope. By contrast, at OEW, high NO&lt;sub&gt;3&lt;/sub&gt;&lt;sup&gt;&amp;#8211;&lt;/sup&gt; concentrations and nitrification rates were observed at all points. NH&lt;sub&gt;4&lt;/sub&gt;&lt;sup&gt;+&lt;/sup&gt; concentrations were similar at all points in both watersheds. At FEW, 10 cm surface soil moisture fluctuated within 25&amp;#8211;40% at the slope top but was within 40&amp;#8211;50% at the slope bottom. At OEW, surface soil moisture was 30&amp;#8211;40% at both the slope top and bottom, with no significant differences according to slope position. It was confirmed that soil moisture was significantly involved in NO&lt;sub&gt;3&lt;/sub&gt;&lt;sup&gt;&amp;#8211; &lt;/sup&gt;concentration and nitrification rates. Model simulations showed that the difference in soil moisture fluctuations between FEW and OEW was mainly explained by the spatial variation in soil physical properties. In particular, volcanic ash influenced soil moisture along the entire slope at OEW, resulting in high water retention, but only influenced soil moisture at the slope bottom at FEW. These findings indicate that spatial variability in soil physical properties has a significant effect on soil moisture fluctuation and leads to a spatial distribution of NO&lt;sub&gt;3&lt;/sub&gt;&lt;sup&gt;&amp;#8211;&lt;/sup&gt; production.&lt;/p&gt;


Sign in / Sign up

Export Citation Format

Share Document