Evaluation of Yield and Grain Quality of Some Bread Wheat Genotypes under Normal Irrigation and Drought Stress Conditions in Calcareous Soils

2011 ◽  
Vol 11 (2) ◽  
pp. 156-164 ◽  
Author(s):  
Thanna H.A. Abd El-Kar ◽  
Aml E.A. El-Saidy
2019 ◽  
Vol 34 (3) ◽  
pp. 314-334
Author(s):  
Zamalotshwa Thungo ◽  
Hussein Shimelis ◽  
Alfred Odindo ◽  
Jacob Mashilo

2019 ◽  
Vol 4 (2) ◽  

The study was conducted to evaluate the effect of GEI and its magnitude on the grain quality of bread wheat genotypes in Ethiopia. 15 bread wheat genotypes were evaluated using RCBD with four replications at six different locations in Ethiopia during 2017/18 cropping season. Combine Analysis of variance showed highly significant (P<0.001) differences among genotype, environment and GEI for investigated quality traits except GEI shows non-significant difference in dry gluten and gluten index. The environment contributed more than 50% only in PC (83.6%) and HLW (56.1%). The three components, G, E and GxE made almost similar contribution to most of the quality traits (WG, DG and GI), although the contribution of the environment was a little higher. Hardness index was determined mainly by the genotype (69.3%). The contribution of GxE was higher than that of genotype in all quality traits except in HDI and GI, again indicating the important role of GxE in the determination of wheat quality traits. Genotype ETBW9045 and ETBW8065 gave the best value of protein in the favorable means (15.05% and 14.75%) respectively. The Hidase had the highest value of wet gluten (58.2%) and dry gluten (24.38%) in average for all investigated locations (58.2%). GGE biplot declared ETBW9045 (#10) and ETBW8065 (#6) genotypes as stable in all quality. These two genotypes ETBW9045 (#10) and ETBW8065 (#6) are recommended for wide adaptation and for crossing. This study demonstrates success in wheat breeding for improved quality in bread wheat. The study also provides information on the combined stability of improved quality of the nationally important bread wheat genotypes. Therefore, the results of this study could be valuable for national bread wheat breeding programs to develop new varieties with high stable grain quality.


2019 ◽  
Vol 7 ◽  
pp. 40-52
Author(s):  
Jawed Aslam Khyber ◽  
Faiza Soomro ◽  
Wahid Dino Sipio ◽  
Abdul Wahid Baloch ◽  
Jay Kumar Soothar ◽  
...  

The current study was planned to identify drought tolerant bread wheat genotypes based on physiological and yield traits. In this context, a set of 12 genotypes (Sarsabz, NIA-Sundar, NIA-Amber, Sassui, Khirman, Marvi-2000, NIA-Sarang, Kiran-95, NIA-Sunheri, Bhittai, Bathoor-08 and Tatara) were evaluated under normal and water stress conditions. Mean squares from analysis of variance exhibited that genotypes, treatments and genotype x treatment interaction showed significant differences (P<0.05) for majority of the studied traits, indicating that there is significant variations are existed for physio-yield traits; therefore these genotypes may be preferred for further breeding programs in respect to drought stress. Regarding reduction percentage of genotypes under drought stress against normal water conditions, the minimum reduction was observed in Bathoor-08 for spike length and flag leaf area, Kiran-95 for grain yield plant, NIA-Sundar for seed index, Marvi-2000 for relative water content, Sarsabz for grains spike, whereas maximum but desirable reduction of stomatal dimension and density was displayed by Sarsabz and Tatara under water stress conditions, respectively. On the basis of drought tolerant indices, the genotypes Kiran-95, NIA-Sundar and Sarsabz showed lower values for tolerance index (TOL), trait stability index (TSI) and stress susceptibility (SSI), nevertheless it is believed that lower values of these indices show the less reduction in yield and its related traits due to water stress conditions hence can be tagged as tolerant genotypes for drought. Correlation results revealed that MP, SSI, TOL and TSI indices were correlated with grain yield under two conditions and they can be the appropriate indices for screening wheat genotypes.


2016 ◽  
Vol 8 (18) ◽  
pp. 16-29 ◽  
Author(s):  
Mandana Mohseni ◽  
Seyyed Mohammad Mahdi Mortazavian ◽  
Hossein Ali Ramshini ◽  
Behrooz Foghi

2014 ◽  
Vol 45 (3) ◽  
pp. 297-308 ◽  
Author(s):  
S. Houshmand ◽  
A. Arzani ◽  
S. A. M. Mirmohammadi-Maibody

Sign in / Sign up

Export Citation Format

Share Document