Unidirectional and Alternate Pathway Impacts of Yield Components on Grain Yield of Guar (Cyamopsis tetragonoloba L.)

2000 ◽  
Vol 3 (5) ◽  
pp. 840-841
Author(s):  
Syed Arif Hussain Shah ◽  
Muhammad Iqbal Salee . ◽  
Muhammad Arshad Huss . ◽  
Tauqeer Ahmad .
Author(s):  
Aybegün Ton

Background: The aim of the present study was to investigate the grain yield, some yield components and quality parameters of mung bean and guar genotypes as summer legumes in East of Mediterranean region of Turkey. Methods: The field experiments were organized in randomized complete blocks design (RCBD) with three replications throughout 2016 and 2018. Result: The greatest the grain yield of mung bean was achieved by genotype KPS1 (3141kg ha-1) and lowest one was obtained from VC6153B6 (2344 kg ha-1) in the average of years. According to the mean years, maximum grain yield of guar was produced by genotype 45 (2354 kg ha-1), while the lowest grain yield was obtained from genotype 37 (1561 kg ha-1). Ash, crude protein, ADF and NDF contents in mung bean genotypes varied beetwen 2.8 and 3.0%, 21.9 and 25.3%, 30.8 and 34.6% and 41.3 and 49.7% in the average of years, respectively. Guar genotypes contain 90.3 to 90.7 drymatter, 4.8 to 5.0% crude ash, 3.8 to 4.6% crude fat, and 33.2 to 35.4% crude protein.


Weed Science ◽  
2020 ◽  
pp. 1-10
Author(s):  
Muhammad Javaid Akhter ◽  
Per Kudsk ◽  
Solvejg Kopp Mathiassen ◽  
Bo Melander

Abstract Field experiments were conducted in the growing seasons of 2017 to 2018 and 2018 to 2019 to evaluate the competitive effects of rattail fescue [Vulpia myuros (L.) C.C. Gmel.] in winter wheat (Triticum aestivum L.) and to assess whether delayed crop sowing and increased crop density influence the emergence, competitiveness, and fecundity of V. myuros. Cumulative emergence showed the potential of V. myuros to emerge rapidly and under a wide range of climatic conditions with no effect of crop density and variable effects of sowing time between the two experiments. Grain yield and yield components were negatively affected by increasing V. myuros density. The relationship between grain yield and V. myuros density was not influenced by sowing time or by crop density, but crop–weed competition was strongly influenced by growing conditions. Due to very different weather conditions, grain yield reductions were lower in the growing season of 2017 to 2018 than in 2018 to 2019, with maximum grain yield losses of 22% and 50% in the two growing seasons, respectively. The yield components, number of crop ears per square meter, and 1,000-kernel weight were affected almost equally, reflecting that V. myuros’s competition with winter wheat occurred both early and late in the growing season. Seed production of V. myuros was suppressed by delaying sowing and increasing crop density. The impacts of delayed sowing and increasing crop density on seed production of V. myuros highlight the potential of these cultural weed control tactics in the long-term management programs of this species.


Genetics ◽  
1997 ◽  
Vol 145 (2) ◽  
pp. 453-465 ◽  
Author(s):  
Zhikang Li ◽  
Shannon R M Pinson ◽  
William D Park ◽  
Andrew H Paterson ◽  
James W Stansel

The genetic basis for three grain yield components of rice, 1000 kernel weight (KW), grain number per panicle (GN), and grain weight per panicle (GWP), was investigated using restriction fragment length polymorphism markers and F4 progeny testing from a cross between rice subspecies japonica (cultivar Lemont from USA) and indica (cv. Teqing from China). Following identification of 19 QTL affecting these traits, we investigated the role of epistasis in genetic control of these phenotypes. Among 63 markers distributed throughout the genome that appeared to be involved in 79 highly significant (P < 0.001) interactions, most (46 or 73%) did not appear to have “main” effects on the relevant traits, but influenced the trait(s) predominantly through interactions. These results indicate that epistasis is an important genetic basis for complex traits such as yield components, especially traits of low heritability such as GN and GWP. The identification of epistatic loci is an important step toward resolution of discrepancies between quantitative trait loci mapping and classical genetic dogma, contributes to better understanding of the persistence of quantitative genetic variation in populations, and impels reconsideration of optimal mapping methodology and marker-assisted breeding strategies for improvement of complex traits.


2015 ◽  
Vol 43 (1) ◽  
pp. 138-145 ◽  
Author(s):  
Abdullah KARASU ◽  
Hayrettin KUȘCU ◽  
Mehmet ÖZ ◽  
Gamze BAYRAM

This research was conducted in Bursa, Marmara region, Turkey, in order to determine grain yield and some morphological traits which affect the silage maize response to different irrigation water amounts. The grains’ percentage of crude oil and of crude protein were determined. Field experiments were planned following randomized complete block design with three replications and included six irrigation treatments. Irrigation treatments were created as water levels of pan evaporation (Epan) applied via drip irrigation [1.25 × Epan (I125), 1.00 × Epan (I100), 0.75 × Epan (I75), 0.50 × Epan (I50), 0.25 × Epan (I25) and 0 × Epan (I0)]. The highest value of grain yield was found to be 18,268 kg ha-1 in the I125 treatment, which represents excessive water. A quadratic relationship between grain yield and irrigation water applied was obtained. Deficit irrigation decreased grain yield and yield components except the percentage of crude oil and crude protein of grain, but improved the efficient use of irrigation water. Relationships between the grain yield and each yield component were positively significant. The highest correlation coefficient in the research gave the relationship between grain yield and plant height (r=0.957**). The results revealed that 1.25 × Epan and 1.00 × Epantreatments are preferable for higher yield. The results of this study also suggest that if water is limited, the application of 0.75 × Epan can be recommended as optimal treatment, because the best compromise among yield, yield components, quality and irrigation water use efficiency for maize was achieved with this application.


2014 ◽  
Vol 24 (1-2) ◽  
pp. 29-37 ◽  
Author(s):  
TA Qurashi ◽  
MA Salam ◽  
M Jannat ◽  
MG Rabbani

An experiment was carried out at Bangladesh Agricultural University, Mymensingh to evaluate the effect of urea super granule (USG) as a source of nitrogen on the yield and yield components of transplant Aman rice cv. BRRI dhan39, BRRI dhan46 and BINA dhan7. Five levels of N (viz., 0, 60, 120 kg ha-1 as prilled urea and 60 and 120 kg ha-1 as USG) were taken as experimental treatments. The experiment was laid out in a randomized complete block design with three replications. Plant height, effective tillers hill-1, grains panicle-1 and grain yield varied significantly due to different cultivars. All the yield and yield components except 1000-grain weight were influenced significantly by the levels of nitrogen fertilizer. The highest grain yield (4.82 t ha-1) was recorded in BINA dhan7 and the lowest one (4.30 t ha-1) was recorded in BRRI dhan39. Nitrogen @ 120 kg ha-1 as USG performed the best among the treatments in respect of yield and yield components of rice. The highest grain yield (5.46t ha-1) was obtained from BINA dhan7 with 120 kg N ha-1 as USG which was statistically identical with 60 kg N ha-1 as USG. A considerable amount (31.25%) of prilled urea (PU) nitrogen could be saved by using USG. It may be concluded that USG could be used as N management to achieve better nitrogen use efficiency in reducing N loss than the PU.DOI: http://dx.doi.org/10.3329/pa.v24i1-2.19095 Progress. Agric. 24(1&2): 29 - 37, 2013


Sign in / Sign up

Export Citation Format

Share Document