Evaluation of Different Empirical Models of Crop/Weed Competition to Estimate Yield and LAI Losses from Common Lambsquarters (Chenopodium album L.) in Maize (Zea mays L.)

2007 ◽  
Vol 10 (21) ◽  
pp. 3752-3761 ◽  
Author(s):  
Mohammad Ali Baghest . ◽  
Eskandar Zand . ◽  
Saeid Soufizadeh . ◽  
Mehdi Agha Beygi .
Weed Science ◽  
1988 ◽  
Vol 36 (2) ◽  
pp. 207-214 ◽  
Author(s):  
Douglas D. Buhler

Application time did not greatly influence control of velvetleaf (Abutilon theophrastiMedik. # ABUTH) or common lambsquarters (Chenopodium albumL. # CHEAL) in no-till corn (Zea maysL. ‘Pioneer 3747’) with fluorochloridone {3-chloro-4-(chloromethyl)-1-[3-(trifluoromethyl) phenyl]-2-pyrrolidinone}. Giant foxtail (Setaria faberiHerrm. # SETFA) control was reduced as much as 25% by 90 days after planting when fluorochloridone was applied early preplant rather than preemergence. Fluorochloridone at 0.8 kg/ha applied preplant or preemergence gave 83% or greater control of common lambsquarters and giant foxtail for the entire growing season. However, velvetleaf control with the same treatments was 61% or less. Fluorochloridone caused minimal corn injury. Greenhouse bioassay indicated that fluorochloridone may carry over and injure soybean[Glycine max(L.) Merr.] the year after application. Imbibition of fluorochloridone by seed of corn and giant foxtail did not reduce germination at concentrations up to 10-3M. Giant foxtail seedling fresh weight was reduced 80% following imbibition of 10-5M fluorochloridone. Corn seedling fresh weight was not reduced by imbibition of up to 10-4M fluorochloridone.


Weed Science ◽  
1979 ◽  
Vol 27 (6) ◽  
pp. 608-611 ◽  
Author(s):  
A. G. Ogg ◽  
S. Drake

Alachlor [2-chloro-2′,6′-diethyl-N-(methoxymethyl)acetanilide] at 3.4 kg/ha, EPTC (S-ethyl dipropylthiocarbamate) + R-25788 (N,N-diallyl-2,2-dichloroacetamide) at 4.5 + 0.4 and 9.0 + 0.8 kg/ha, vernolate (S-propyl dipropylthiocarbamate) + R-25788 at 4.5 + 0.4 and 9.0 + 0.8 kg/ha, metolachlor [2-chloro N-(2-ethyl-6-methylphenyl)-N-(2-methoxy-1-methylethyl)acetamide] at 1.7 and 3.4 kg/ha, and metolachlor + procyazine {2-[[4-chloro-6-(cyclopropylamino)1,3,5-triazine-2-yl] amino]-2-methylpropanenitrile} at 1.3 + 1.3 kg/ha were preplant incorporated. These herbicides controlled 95% or more of the barnyardgrass [Echinochloa crus-galli (L.) Beauv.], common lambsquarters (Chenopodium album L.), redroot pigweed (Amaranthus retroflexus L.), Powell amaranth (A. powellii S. Wats.), and yellow foxtail [Setaria lutescens (Weigel) Hubb.] without injuring sweetcorn (Zea mays L. ‘Golden Jubilee’) or reducing corn yields or quality. Similar results were obtained with preplant incorporated applications of butylate (S-ethyldiisobutylthiocarbamate) + R-25788 at 4.5 + 0.2 kg/ha followed by a postemergence application of the amine salt of 2,4-D [(2,4-dichlorophenoxy)acetic acid] at 0.6 kg/ha. Metribuzin [4-amino-6-tert-butyl-3-(methylthio)-as-triazin-5(4H)-one] at 0.3 and 0.6 kg/ha and metribuzin + alachlor at 0.6 + 2.2 kg/ha applied preplant and incorporated reduced corn stands, primary ear production, and corn yields significantly. None of the herbicides significantly affected total sugars, reducing sugars, soluble solids, moisture content, or succulence of the corn.


2009 ◽  
Vol 89 (5) ◽  
pp. 969-975
Author(s):  
Nader Soltani ◽  
Richard J Vyn ◽  
Laura L Van Eerd ◽  
Christy Shropshire ◽  
Peter H Sikkema

A study was conducted over a 3-yr period (2003, 2004, and 2005) to evaluate the effect of reduced herbicide rates - 20, 40, 60, 80, and 100% of the manufacturer’s recommended rate (MRR) - on weed biomass reduction, environmental impact (EI), yield, and profitability of corn (Zea mays L.) in Ontario. The herbicide rate required to provide 95% biomass reduction of velvetleaf (Abutilon theophrasti Medic.), redroot pigweed (Amaranthus retroflexus L.), common ragweed (Ambrosia artemisiifolia L.), common lambsquarters (Chenopodium album L.), and annual grasses was 92, 30, 41, 28, and 83% of the MRR for isoxaflutole plus atrazine, >200, 119, 23, 23, and 117% of the MRR for dimethenamid plus dicamba/atrazine, 141, 72, 46, 45, and >200% of the MRR for glufosinate plus atrazine, and 81, 29, 18, 24, and 88% of the MRR for nicosulfuron/rimsulfuron plus dicamba/diflufenzopyr, respectively. The herbicide rate required to provide 95% of weed-free corn yield was 61, 22, 130, and 11% of the MRR for isoxaflutole plus atrazine, dimethenamid plus dicamba/atrazine, glufosinate plus atrazine, and nicosulfuron/rimsulfuron plus dicamba/diflufenzopyr, respectively. Nicosulfuron/rimsulfuron plus dicamba/diflufenzopyr had the lowest EI. The results of profitability analysis suggested that the MRR rates do not tend to maximize profit margins. In most cases, there were no significant differences in profit margins for treatments with 40, 60, 80, and 100% of the MRR. Key words: Atrazine, dicamba, diflufenzopyr, dimethenamid, glufosinate, nicosulfuron, rimsulfuron, Zea mays L.


1995 ◽  
Vol 9 (4) ◽  
pp. 728-735 ◽  
Author(s):  
Robert J. Parks ◽  
William S. Curran ◽  
Gregory W. Roth ◽  
Nathan L. Hartwig ◽  
Dennis D. Calvin

Greenhouse studies assessed the susceptibility of three common lambsquarters biotypes to foliar-applied bromoxynil, dicamba, and thifensulfuron. Field studies evaluated the effectiveness of the same herbicides in conjunction with atrazine and row cultivation for the control of common lambsquarters in corn. In the field, bromoxynil was applied at 140, 280, and 420 g/ha, dicamba at 140, 280, and 560 g/ha, and thifensulfuron at 2, 3, and 4 g/ha. In the greenhouse, bromoxynil and thifensulfuron reduced common lambsquarters growth by at least 55%, while dicamba reduced growth 45% or less. Two of the three biotypes were resistant to atrazine. In the field, weed control was up to 70% better in cultivated plots than in noncultivated plots. Cultivation sometimes promoted additional weed emergence, but later emerging weeds rarely reached reproductive maturity. Atrazine improved the level of weed control only if triazine-susceptible weeds were present. The lowest rates of bromoxynil and dicamba (140 g/ha) controlled common lambsquarters 85% or greater even without cultivation, whereas control with the low rate of thifensulfuron (2 g/ha) was acceptable (greater than 85%) 8 wk after planting only in combination with cultivation. Combinations of reduced herbicide rates and mechanical cultivation provided effective, alternative control strategies for both triazine-resistant and susceptible common lambsquarters.


Weed Science ◽  
1972 ◽  
Vol 20 (1) ◽  
pp. 36-40 ◽  
Author(s):  
C. N. Smith ◽  
John D. Nalewaja

Uptake of 2-chloro-4-(ethylamino)-6-(isopropylamino)-s-triazine (atrazine) as influenced by adjuvants to the treatment medium was studied using both excised leaf sections and leaves of intact plants. Uptake of the14C-atrazine label by yellow foxtail(Setaria glauca(L.) Beauv.) leaf sections was higher at 35 than at 5 C and at pH 3 and 9 than at 5 or 7. The rapid uptake of14C-atrazine label by corn(Zea maysL.) leaf sections was attributed to a high rate of atrazine metabolism. However, atrazine metabolism did not explain the greater uptake by common lambsquarters(Chenopodium albumL.) leaf sections than by yellow foxtail. Atrazine14C-label uptake by yellow foxtail leaf sections from exogenous solution was influenced by light, phospholipase D or water pretreatment, atrazine concentration, and oil. The14C-label of atrazine in the leaf distal to the treated spot was greater when the treatment contained an oil than when applied in only water even though the area of the spot was kept constant. Further, greater uptake of the label occurred at a high than at a low temperature regardless of the application medium.


1997 ◽  
Vol 11 (3) ◽  
pp. 436-443 ◽  
Author(s):  
Scott Glenn ◽  
William H. Phillips ◽  
Pablo Kalnay

Control and regrowth of hemp dogbane, wild blackberry, and triazine-resistant common lambsquarters (TR-CHEAL) were studied in no-till corn from 1992 to 1994. Hemp dogbane, wild blackberry, and TR-CHEAL population increased 10, 123, and 177%, respectively, between 1992 and 1994 in plots treated with PRE applications of paraquat, atrazine, and metolachlor (weedy checks). POST applications of tank mixtures of 35 g ai/ha nicosulfuron or 20 g/ha primisulfuron with 280 g/ha 2,4-D or 140 g/ha dicamba, and 560 g/ha dicamba applied alone controlled hemp dogbane, wild blackberry, and TR-CHEAL 67 to 98%. These treatments reduced the population or prevented expansion of these weeds the year following treatment. In 1992, corn yield response to weed control was inconsistent. In 1993 and 1994, all plots treated with POST herbicides yielded higher than the weedy check. Corn yield of plots treated with combinations of nicosulfuron or primisulfuron with 2,4-D or dicamba and 560 g/ha dicamba applied alone were 102 to 149% and 124 to 153% higher than the weedy check in 1993 and 1994, respectively.


2006 ◽  
Vol 20 (4) ◽  
pp. 908-920 ◽  
Author(s):  
Scott L. Bollman ◽  
James J. Kells ◽  
Thomas T. Bauman ◽  
Mark M. Loux ◽  
Charles H. Slack ◽  
...  

Field trials were conducted in 2002 and 2003 at seven sites to determine the optimum rates of mesotrione and atrazine applied PRE for minimal crop injury and control of common lambsquarters, velvetleaf, Pennsylvania smartweed, common ragweed, giant ragweed, ivyleaf morningglory, and common cocklebur. All rates of each herbicide resulted in greater than 95% control of triazine-susceptible common lambsquarters. Mesotrione at 105 g ai/ha resulted in greater than 90% control of triazine-resistant common lambsquarters, velvetleaf, and Pennsylvania smartweed. Control of common ragweed was 90% or greater from mesotrione at 158 g/ha in combination with atrazine at 280 g/ha or greater. In addition, mesotrione at 210 g/ha combined with any rate of atrazine provided at least 92% control of common ragweed. Combinations of mesotrione and atrazine only suppressed, and did not effectively control, giant ragweed, common cocklebur, and ivyleaf morningglory.


Weed Science ◽  
1984 ◽  
Vol 32 (1) ◽  
pp. 76-83 ◽  
Author(s):  
Edward E. Schweizer ◽  
Robert L. Zimdahl

The impact of two weed management systems on the weed seed reserves of the soil, on the yearly weed problem, and on corn (Zea maysL.) production was assessed where corn was grown under furrow irrigation for 6 consecutive years. In one system, 2.2 kg/ha of atrazine [2-chloro-4-(ethylamino)-6-(isopropylamino)-s-triazine] was applied annually to the same plots as a preemergence treatment. In the other system, a mixture of 1.7 kg/ha of atrazine plus 2.2 kg/ha of alachlor [2-chloro-2′,6′-diethyl-N-(methoxymethyl)acetanilide] was applied preemergence, followed by a postemergence application of 0.6 kg/ha of the alkanolamine salts of 2,4-D [(2,4-dichlorophenoxy)acetic acid]. The response of weeds and corn is presented only where atrazine was applied annually because the results were similar between both weed management systems. Weed seeds from eight annual species were identified, with redroot pigweed (Amaranthus retroflexusL. ♯ AMARE) and common lambsquarters (Chenopodium album♯ CHEAL) comprising 82 and 12%, respectively, of the initial 1.3 billion weed seeds/ha that were present in the upper 25 cm of the soil profile. After the sixth cropping year, the overall decline in the total number of redroot pigweed and common lambsquarters seeds was 99 and 94%, respectively. Very few weeds produced seeds during the first 5 yr, and no weed seeds were produced during the sixth year where atrazine was applied annually. When the use of atrazine was discontinued on one-half of each plot at the beginning of the fourth year, the weed seed reserve in soil began to increase due to an increase in the weed population. After 3 yr of not using atrazine, the weed seed reserve in soil had built up to over 648 million seeds/ha, and was then within 50% of the initial weed seed population. In the fifth and sixth years, grain yields were reduced 39 and 14%, respectively, where atrazine had been discontinued after 3 yr.


Sign in / Sign up

Export Citation Format

Share Document