Effects of Mineral Nitrogen on Water Use Efficiency of Chickpea (Cicer arietinum L.) under Water Deficit Condition

2009 ◽  
Vol 3 (3) ◽  
pp. 332-338 ◽  
Author(s):  
Shahzad Jamaati-E-Somarin ◽  
Nayer Bahavar ◽  
Ali Ebadi ◽  
Ahmad Tobeh
2021 ◽  
pp. 29-42
Author(s):  
Boutheina Douh ◽  
Amel Mguidiche ◽  
Massoud Jar Allah al-Marri ◽  
Mohamed Moussa ◽  
Hichem Rjeb

Six kabuli chickpea genotypes (Cicer Arietinum L.) were evaluated under three water levelss at the open field during February -June 2018. This study was conducted to evaluate the chickpea water stress, on soil water dynamic, agromorphological traits, and water use efficiency to estimate variability levels between varieties and to identify the varieties of chickpea adaptable on semi-arid bioclimatic stage. For this purpose, a trial was conducted at the Higher Agronomic Institute of Chott Mariem (Tunisia). There is no effect of the treatment on the height, biological yield, and branching number. The seeds weigh, PCG, seed yield, harvest index, and water use efficiency relative to seed have the highest value in T1 (100% of ETc) when water use efficiency relative to biological yield, number of pods and of seeds recorded the highest values in T3 (50% of ETc). Univariate analysis showed highly significant differences between genotypes for many traits. Principal Component Analysis was performed for all traits and allowed to define two axes. The first one explains 49.30% of the variability of the total trait and was formed by genotypes ‘Beja’, ‘Nayer’ and’ ‘Rebha’. Genotypes forming this axe are closely related to each other according to their common morphological characters like height (r=0.88), biological yield (r=0.93), bringing the number (r=0.53), seed yield (r=0.81), WUE relative to seed (r=0.75), harvest index (r=0.65) and WUE relative to biological yield (r=0.94). The second clustered genotypes ‘Bochra’ and ‘Nour’. This second axe (27.99%) is represented by pods number (r=0.87), seed number (r=0.87) and PCG (r=0.78).


Author(s):  
S. Sarkar ◽  
A. Sarkar

A field experiment was conducted at Research farm, BCKV, West Bengal during rabi 2010-11 and 2011-12 to evaluate the effect of irrigation and mulch on growth, nodulation, yield and water use efficiency of chickpea (Cicer arietinum L.). Chickpea irrigated at IW/CPE of 0.6 showed 7.14% and 23.53% higher seed yield compared to IW/CPE of 0.4 (0.98 t/ha) and Rainfed (0.85 t/ha), respectively and was significantly superior. Maximum seed yield of about 1.01 t/ha under the treatment receiving black polythene mulch, which was about 3.59%, 7.45% and 9.78% higher over the treatments receiving straw @ 5 t/ha, water hyacinth @ 5 t/ha and no mulch, respectively. Straw mulch @ 5 t/ha performed best regarding nodule dry weight and number per plant. Water use efficiency was highest with rainfed treatment and treatment receiving black polythene. Irrigation applied at IW/CPE of 0.6 maintained its superiority with highest net return, B:C, production and economic efficiency. Among mulches, highest return, B:C and efficiencies were recorded with the application of black polythene.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Xin Jia ◽  
Ke Mao ◽  
Ping Wang ◽  
Yu Wang ◽  
Xumei Jia ◽  
...  

AbstractWater deficit is one of the major limiting factors for apple (Malus domestica) production on the Loess Plateau, a major apple cultivation area in China. The identification of genes related to the regulation of water use efficiency (WUE) is a crucial aspect of crop breeding programs. As a conserved degradation and recycling mechanism in eukaryotes, autophagy has been reported to participate in various stress responses. However, the relationship between autophagy and WUE regulation has not been explored. We have shown that a crucial autophagy protein in apple, MdATG8i, plays a role in improving salt tolerance. Here, we explored its biological function in response to long-term moderate drought stress. The results showed that MdATG8i-overexpressing (MdATG8i-OE) apple plants exhibited higher WUE than wild-type (WT) plants under long-term moderate drought conditions. Plant WUE can be increased by improving photosynthetic efficiency. Osmoregulation plays a critical role in plant stress resistance and adaptation. Under long-term drought conditions, the photosynthetic capacity and accumulation of sugar and amino acids were higher in MdATG8i-OE plants than in WT plants. The increased photosynthetic capacity in the OE plants could be attributed to their ability to maintain optimal stomatal aperture, organized chloroplasts, and strong antioxidant activity. MdATG8i overexpression also promoted autophagic activity, which was likely related to the changes described above. In summary, our results demonstrate that MdATG8i-OE apple lines exhibited higher WUE than WT under long-term moderate drought conditions because they maintained robust photosynthesis, effective osmotic adjustment processes, and strong autophagic activity.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
M. A. Gomaa ◽  
Essam E. Kandil ◽  
Atef A. M. Zen El-Dein ◽  
Mamdouh E. M. Abou-Donia ◽  
Hayssam M. Ali ◽  
...  

AbstractIn Egypt, water shortage has become a key limiting factor for agriculture. Water-deficit stress causes different morphological, physiological, and biochemical impacts on plants. Two field experiments were carried out at Etay El-Baroud Station, El-Beheira Governorate, Agriculture Research Center (ARC), Egypt, to evaluate the effect of potassium silicate (K-silicate) of maize productivity and water use efficiency (WUE). A split-plot system in the four replications was used under three irrigation intervals during the 2017 and 2018 seasons. Whereas 10, 15, and 20 days irrigation intervals were allocated in main plots, while the three foliar application treatments of K-silicate (one spray at 40 days after sowing; two sprays at 40 and 60 days; and three sprays at 40, 60, and 80 days, and a control (water spray) were distributed in the subplots. All the treatments were distributed in 4 replicates. The results indicated that irrigation every 15 days gave the highest yield in both components and quality. The highly significant of (WUE) under irrigation every 20 days. Foliar spraying of K-silicate three times resulted in the highest yield. Even under water-deficit stress, irrigation every fifteen days combined with foliar application of K-silicate three times achieved the highest values of grain yield and its components. These results show that K-silicate treatment can increase WUE and produce high grain yield requiring less irrigation.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Fuqiang Li ◽  
Haoliang Deng ◽  
Yucai Wang ◽  
Xuan Li ◽  
Xietian Chen ◽  
...  

AbstractThe effects of the amount and timing of regulated deficit drip irrigation under plastic film on potato (‘Qingshu 168’) growth, photosynthesis, yield, water use efficiency, and quality were examined from 2017 to 2019 in cold and arid northwestern China. In the four stages of potato growth (seedling, tuber initiation, tuber bulking, starch accumulation), eight treatments were designed, with a mild deficit was in treatments WD1 (seedling), WD2 (tuber initiation), WD3 (tuber bulking), and WD4 (starch accumulation); and a moderate deficit in WD5 (seedling), WD6 (tuber initiation), WD7 (tuber bulking), and WD8 (starch accumulation). The net photosynthetic rate, stomatal conductance, and transpiration rate decreased significantly under water deficit in the tuber formation and starch accumulation stages. Although water deficit reduced potato yields, a mild deficit in the seedling stage resulted in the highest yield and water use efficiency at 43,961.91 kg ha−1 and 8.67 kg m−3, respectively. The highest overall quality was in potatoes subjected to mild and moderate water deficit in the seedling stage. Principal component analysis identified mild water stress in the seedling stage as the optimum regulated deficit irrigation regime. The results of this study provide theoretical and technical references for efficient water-saving cultivation and industrialization of potato in northwestern China.


Sign in / Sign up

Export Citation Format

Share Document