scholarly journals Assessment of deficit irrigation impact on agronomic parameters and water use efficiency of six chickpea (Cicer Arietinum L.) cultivars under Mediterranean semi-arid climate

2021 ◽  
pp. 29-42
Author(s):  
Boutheina Douh ◽  
Amel Mguidiche ◽  
Massoud Jar Allah al-Marri ◽  
Mohamed Moussa ◽  
Hichem Rjeb

Six kabuli chickpea genotypes (Cicer Arietinum L.) were evaluated under three water levelss at the open field during February -June 2018. This study was conducted to evaluate the chickpea water stress, on soil water dynamic, agromorphological traits, and water use efficiency to estimate variability levels between varieties and to identify the varieties of chickpea adaptable on semi-arid bioclimatic stage. For this purpose, a trial was conducted at the Higher Agronomic Institute of Chott Mariem (Tunisia). There is no effect of the treatment on the height, biological yield, and branching number. The seeds weigh, PCG, seed yield, harvest index, and water use efficiency relative to seed have the highest value in T1 (100% of ETc) when water use efficiency relative to biological yield, number of pods and of seeds recorded the highest values in T3 (50% of ETc). Univariate analysis showed highly significant differences between genotypes for many traits. Principal Component Analysis was performed for all traits and allowed to define two axes. The first one explains 49.30% of the variability of the total trait and was formed by genotypes ‘Beja’, ‘Nayer’ and’ ‘Rebha’. Genotypes forming this axe are closely related to each other according to their common morphological characters like height (r=0.88), biological yield (r=0.93), bringing the number (r=0.53), seed yield (r=0.81), WUE relative to seed (r=0.75), harvest index (r=0.65) and WUE relative to biological yield (r=0.94). The second clustered genotypes ‘Bochra’ and ‘Nour’. This second axe (27.99%) is represented by pods number (r=0.87), seed number (r=0.87) and PCG (r=0.78).

Author(s):  
S. Sarkar ◽  
A. Sarkar

A field experiment was conducted at Research farm, BCKV, West Bengal during rabi 2010-11 and 2011-12 to evaluate the effect of irrigation and mulch on growth, nodulation, yield and water use efficiency of chickpea (Cicer arietinum L.). Chickpea irrigated at IW/CPE of 0.6 showed 7.14% and 23.53% higher seed yield compared to IW/CPE of 0.4 (0.98 t/ha) and Rainfed (0.85 t/ha), respectively and was significantly superior. Maximum seed yield of about 1.01 t/ha under the treatment receiving black polythene mulch, which was about 3.59%, 7.45% and 9.78% higher over the treatments receiving straw @ 5 t/ha, water hyacinth @ 5 t/ha and no mulch, respectively. Straw mulch @ 5 t/ha performed best regarding nodule dry weight and number per plant. Water use efficiency was highest with rainfed treatment and treatment receiving black polythene. Irrigation applied at IW/CPE of 0.6 maintained its superiority with highest net return, B:C, production and economic efficiency. Among mulches, highest return, B:C and efficiencies were recorded with the application of black polythene.


Author(s):  
Indu Bala Dehal ◽  
Rama Kalia ◽  
Bhupender Kumar

The research was carried out to determine selection criteria using correlation and path coefficient analysis in 25 chickpea (Cicer arietinum L.) genotypes under two different environments during rabi 2008-09 at Palampur location. The genotypes showed highly significant differences for all the characters studied in both environments. Environment I (normal sowing) exhibited its excellent potential for the traits viz., seed yield per plant, biological yield per plant, pods per plant, primary branches per plant, days to 50% flowering, days to maturity and plant height, whereas environment II (late sowing) exhibited it for harvest index, per cent crude protein and 100-seed weight. High heritability coupled with high genetic advance was observed for seed yield per plant, pods per plant and 100-seed weight in environment I. Seed yield per plant was positively and significantly correlated with pods per plant (E1=0.767 and E2=0.647), harvest index (E1=0.767 and E2=0.745), biological yield per plant (E1=0.612 and E2=0.537) and primary branches per plant (E1=0.422 and E2=0.515) in both the environments. Path coefficient analysis revealed the high direct effect of biological yield and harvest index towards seed yield per plant, whereas primary branches per plant and pods per plant showed negligible direct effect, but their indirect contribution for it through biological yield and harvest index was high. The present study suggests that selection for high seed yield should be based on selecting high biological yield, pod per plant, high test weight and primary branches per plants in chickpea.


1998 ◽  
Vol 78 (4) ◽  
pp. 565-570 ◽  
Author(s):  
P. R. Miller ◽  
A. M. Johnston ◽  
S. A. Brandt ◽  
C. L. McDonald ◽  
D. A. Derksen ◽  
...  

Sunola (Helianthus annuus L.) emerged in the early 1990s as a new drought- and heat-tolerant oilseed crop option for prairie producers. This study was conducted to compare the agronomic performance of sunola with that of canola (Brassica napus L. and B. rapa L.) and mustard (B. juncea L.). In 1993 and 1994 a spring seeding date experiment comparing crop maturity and grain yield of sunola, canola and mustard was conducted at three locations: Swift Current and Scott in the semi-arid Brown and Dark Brown soil zones, respectively, and Melfort in the subhumid Black soil zone. Additionally, a tillage system experiment was conducted at Swift Current that compared grain yield and water-use-efficiency (WUE) of sunola and mustard grown in four tillage treatments: tilled, and untilled fallow, and tilled, and untilled wheat stubble. In the more typical 1994 season, the average thermal time to reach maturity for sunola was 1200 growing degree days (GDD), consistent for all locations, and was greater than that required for B. napus by 70 to 320 GDD (1–4 wk), depending on location. When compared with the seed yield of the Brassica spp. oilseeds, sunola averaged 59% at Swift Current, 54% at Scott, and 94% at Melfort. The WUE for sunola was 3.0 and 2.9 kg ha−1 mm−1 when grown on fallow and wheat stubble, respectively, compared with 5.6 and 4.8 kg ha–1 mm–1 for mustard. Due to its low seed yield potential and low WUE, sunola is not well adapted for production in the semi-arid Brown and Dark Brown soil zones. Key words: Sunola, canola, mustard, adaptation, seeding date, water-use-efficiency


2003 ◽  
Vol 141 (3-4) ◽  
pp. 285-301 ◽  
Author(s):  
M. RAJIN ANWAR ◽  
B. A. McKENZIE ◽  
G. D. HILL

The present study was conducted from 1998 to 2000, to evaluate seasonal water use and soil-water extraction by Kabuli chickpea (Cicer arietinum L.). The response of three cultivars to eight irrigation treatments in 1998/99 and four irrigation treatments in 1999/2000 at different growth stages was studied on a Wakanui silt loam soil in Canterbury, New Zealand. Evapotranspiration was measured with a neutron moisture meter and water use efficiency (WUE) was examined at crop maturity. Water use was about 426 mm for the fully irrigated treatment and at least 175 mm for the non-irrigated plants. There was a significant correlation (P<0·001) between water use and biomass yield (R2=0·80) and water use and seed yield (R2=0·75). There were also highly significant (P<0·001) interacting effects of irrigation, sowing date and cultivar on WUE and the trend was similar to that for seed yield. The estimated WUE ranged from 22–29 kg DM/ha per mm and 10–13 kg seed yield/ha per mm water use.The three chickpea cultivars were capable of drawing water from depths greater than 60 cm. However, most of the water use (0·49–0·93 mm/10 cm soil layer per day) came from the top 0–30 cm, where most of the active roots were concentrated. The study has shown that using actual evapotranspiration and water-use efficiency, the biomass yield and seed yield of Kabuli chickpeas can be accurately predicted in Canterbury. Soil water shortage has been identified as a major constraint to increasing chickpea production. Drought was quantified using the concept of maximum potential soil moisture deficit (Dpmax) calculated from climate data. Drought responses of yield, phenology, radiation use efficiency and yield components were determined, and were highly correlated with Dpmax. The maximum potential soil moisture deficit increased from about 62 mm (irrigated throughout) to about 358 mm (dryland plots). Chickpea yield, intercepted radiation and the number of pods per plant decreased linearly as the Dpmax increased. Penman's irrigation model accurately described the response of yield to drought. The limiting deficit for this type of soil was c. 165 and 84 mm for the November and December sowings in 1998/99 and 170 mm in 1999/2000. Beyond these limiting deficits, yield declined linearly with maximum potential soil moisture deficits of up to 358 mm. There was little evidence to support the idea of a moisture sensitive period in these Kabuli chickpea cultivars. Yield was increased by irrigating at any stage of crop development, provided that the water was needed as determined by the potential soil moisture deficit and sowing early in the season.


Author(s):  
P. Chakraborty M. Das Bairagya ◽  
S. Sarkar J. M. L. Gulati ◽  
G. H. Santra N. Nayak ◽  
B. K. Sahoo

Sesame (Sesamum indicum L.) plays a vital role in the Indian agriculture, industry and export trade. It commonly known as til and also called as “queen of oilseeds” has been known to be one of the earliest domesticated edible oilseeds used by mankind. It is grown in wide range of environments extending from semi-arid tropics and subtropics to temperate regions. A field experiment entitled “effects of irrigation and nutrient management on summer sesame (Sesamum indicum L.)”,was conducted at the Agricultural Research Station, Brinjhagiri, Chatabar of Faculty of Agricultural Sciences, Siksha ‘O’ Anusandhan (Deemed to be University), Bhubaneswar (Odisha) during summer season of 2021. Treatments included three irrigation levels (I1: 2 irrigations at 21 and 63 days after sowing, I2: 2 irrigations at 21 and 42 days after sowingand I3: 3 irrigations at 21, 42 and 63 days after sowing) are treated in main plot and four nutrient management (N1: 100% RDF, N2: 100% RDF + 2 t/ha FYM, N3: 100% RDF + 2 t/ha FYM + Jeevamrut @250l/ha and N4: 75% RDF + 2 t/ha FYM + Jeevamrut @250l/ha) are treated in sub plot were experimented in split plot design replicate thrice. The experiment was conducted with the variety of TKG-21 followed the spacing of 30 cm × 10 cm. The experimental soil was sandy loam in texture with the pH of 5.65 and EC of 7.33 ds/m. The recommended dose of NPK was given 30:15:15 kg ha-1. From the experiment, highest seed yield (643.49 kg ha-1), haulm yield (1820.13 kg ha-1) and harvest index (26.04%) was obtained in I3. N4 (75% RDF + 2 t/ha FYM + Jeevamrut @250l/ha) showed second highest seed yield (652.21 kg ha-1), haulm yield (1882.07 kg ha-1) and harvest index (25.74%) which is at per with N3. Highest water use efficiency (2.72 kg ha-1 m-1) was calculated in I2N3. Hence, it can be conclude that cultivation of sesame under75% RDF + 2 t/ha FYM + Jeevamrut @250l/ha with 2 irrigations at 21 and 42 days after sowing proved better in terms of yield, economics and water use efficiency.


Author(s):  
G.D. Gadade ◽  
D.N. Gokhale ◽  
A.S. Kadale

Background: Pigeonpea an indeterminate pulse crop with profuse branching responds well to both irrigation and fertilizer. Erratic rainfall distribution pattern exposes this crop to dry spell during its vegetative stage and terminal drought at reproductive stage and the poor crop nutrition further results in to low yield. Under such circumstances it is very difficult to sustain the yield of pigeonpea. Agronomic practices like precise and timely application of drip irrigation along with judicious use of nutrients play a vital role to boost the yield of any crop. Thus the attempts were made to explore the yield potential of pigeonpea under drip irrigation and fertigation management. Methods: The present study was conducted at the experimental farm of AICRP on Irrigation Water Management, VNMKV, Parbhani (MS) during kharif 2018 and 2019. The experiment was laid out in split plot design with main plots comprising of four drip irrigation levels viz. 0.6, 0.8, 1.0 ETc (crop evapotranspiration) and conventional method and sub plots were allotted to four fertigation levels viz. control (no fertilizer), 80% RDF, 100% RDF (25: 50: 25 NPK kg ha-1) and 120% RDF. Result: Drip irrigation at 0.8 ETc recorded higher seed yield, harvest index, water use efficiency, nutrient use efficiency and net returns of pigeonpea followed by 1.0 ETc except in case of water use efficiency. As regards to fertigation studies, higher values of seed yield, harvest index and water use efficiency were recorded with drip fertigation @ 25:50:25 NPK kg ha-1 closely followed by 20:40:20 NPK kg ha-1. However higher nutrient use efficiency and net returns were obtained in drip fertigation @ 20:40:20 NPK kg ha-1.


Sign in / Sign up

Export Citation Format

Share Document