scholarly journals Bistable and oscillatory dynamics of Nicholson's blowflies equation with Allee effect

2021 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Xiaoyuan Chang ◽  
Junping Shi

<p style='text-indent:20px;'>The bistable dynamics of a modified Nicholson's blowflies delay differential equation with Allee effect is analyzed. The stability and basins of attraction of multiple equilibria are studied by using Lyapunov-LaSalle invariance principle. The existence of multiple periodic solutions are shown using local and global Hopf bifurcations near positive equilibria, and these solutions generate long transient oscillatory patterns and asymptotic stable oscillatory patterns.</p>

2000 ◽  
Vol 130 (5) ◽  
pp. 1103-1118 ◽  
Author(s):  
Manuel Pinto ◽  
Sergei Trofimchuk

We study the stability of periodic solutions of the scalar delay differential equation where f(t) is a periodic forcing term and δ,p∈R. We study stability in the first approximation showing that the non-smooth equation (*) can be linearized along some ‘non-singular’ periodic solutions. Then the corresponding variational equation together with the Krasnosel'skij index are used to prove the existence of multiple periodic solutions to (*). Finally, we apply a generalization of Halanay's inequality to establish conditions for global attractivity in equations with maxima.


2018 ◽  
Vol 28 (12) ◽  
pp. 1850153
Author(s):  
Xiaoyuan Chang ◽  
Junping Shi ◽  
Jimin Zhang

A scalar population model with delayed growth rate of Allee effect type is considered in this paper. The stability of equilibria and associated supercritical Hopf bifurcations are analyzed. The basins of attraction of the two locally stable equilibria are characterized in terms of parameter values. In particular, when the time delay is large, the basin of attraction of the persistence equilibrium and limit cycle shrinks to a single point, so a global extinction of population occurs as a combined result of Allee effect and time delay.


2021 ◽  
Vol 3 (3) ◽  
Author(s):  
Satish Kumar Tiwari ◽  
Ravikant Singh ◽  
Nilesh Kumar Thakur

AbstractWe propose a model for tropic interaction among the infochemical-producing phytoplankton and non-info chemical-producing phytoplankton and microzooplankton. Volatile information-conveying chemicals (infochemicals) released by phytoplankton play an important role in the food webs of marine ecosystems. Microzooplankton is an ecologically important grazer of phytoplankton for coexistence of a large number of phytoplankton species. Here, we discuss how information transferred by dimethyl sulfide shapes the interaction of phytoplankton. Phytoplankton deterrents may lead to propagation of IPP bloom. The interaction between IPP and microzooplankton follows the Beddington–DeAngelis-type functional response. Analytically, we discuss boundedness, stability and Turing instability of the model system. We perform numerical simulation for temporal (ODE model) as well as a spatial model system. Our numerical investigation shows that microzooplankton grazing refuse of IPP leads to oscillatory dynamics. Increasing diffusion coefficient of microzooplankton shows Turing instability. Time evolution also plays an important role in the stability of system dynamics. The results obtained in this paper are useful to understand the dominance of algal bloom in coastal and estuarine ecosystem.


2021 ◽  
Vol 29 (1) ◽  
Author(s):  
Kamrun Nahar Keya ◽  
Md. Kamrujjaman ◽  
Md. Shafiqul Islam

AbstractIn this paper, we consider a reaction–diffusion model in population dynamics and study the impact of different types of Allee effects with logistic growth in the heterogeneous closed region. For strong Allee effects, usually, species unconditionally die out and an extinction-survival situation occurs when the effect is weak according to the resource and sparse functions. In particular, we study the impact of the multiplicative Allee effect in classical diffusion when the sparsity is either positive or negative. Negative sparsity implies a weak Allee effect, and the population survives in some domain and diverges otherwise. Positive sparsity gives a strong Allee effect, and the population extinct without any condition. The influence of Allee effects on the existence and persistence of positive steady states as well as global bifurcation diagrams is presented. The method of sub-super solutions is used for analyzing equations. The stability conditions and the region of positive solutions (multiple solutions may exist) are presented. When the diffusion is absent, we consider the model with and without harvesting, which are initial value problems (IVPs) and study the local stability analysis and present bifurcation analysis. We present a number of numerical examples to verify analytical results.


2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Guiying Chen ◽  
Linshan Wang

The stability of a class of static interval neural networks with time delay in the leakage term is investigated. By using the method ofM-matrix and the technique of delay differential inequality, we obtain some sufficient conditions ensuring the global exponential robust stability of the networks. The results in this paper extend the corresponding conclusions without leakage delay. An example is given to illustrate the effectiveness of the obtained results.


2016 ◽  
Vol 809 ◽  
pp. 873-894 ◽  
Author(s):  
John E. Sader ◽  
Cecilia Huertas-Cerdeira ◽  
Morteza Gharib

Cantilevered elastic sheets and rods immersed in a steady uniform flow are known to undergo instabilities that give rise to complex dynamics, including limit cycle behaviour and chaotic motion. Recent work has examined their stability in an inverted configuration where the flow impinges on the free end of the cantilever with its clamped edge downstream: this is commonly referred to as an ‘inverted flag’. Theory has thus far accurately captured the stability of wide inverted flags only, i.e. where the dimension of the clamped edge exceeds the cantilever length; the latter is aligned in the flow direction. Here, we theoretically examine the stability of slender inverted flags and rods under steady uniform flow. In contrast to wide inverted flags, we show that slender inverted flags are never globally unstable. Instead, they exhibit bifurcation from a state that is globally stable to multiple equilibria of varying stability, as flow speed increases. This theory is compared with new and existing measurements on slender inverted flags and rods, where excellent agreement is observed. The findings of this study have significant implications to investigations of biological phenomena such as the motion of leaves and hairs, which can naturally exhibit a slender geometry with an inverted configuration.


Author(s):  
Süleyman Öğrekçi

In this paper, we consider the stability problem of delay differential equations in the sense of Hyers-Ulam-Rassias. Recently this problem has been solved for bounded intervals, our result extends and improve the literature by obtaining stability in unbounded intervals. An illustrative example is also given to compare these results and visualize the improvement.


Sign in / Sign up

Export Citation Format

Share Document