scholarly journals Dynamic network flow location models and algorithms for quickest evacuation planning

2017 ◽  
Vol 13 (5) ◽  
pp. 0-0 ◽  
Author(s):  
Hari Nandan Nath ◽  
◽  
Urmila Pyakurel ◽  
Tanka Nath Dhamala ◽  
Stephan Dempe ◽  
...  
2020 ◽  
Vol 37 (1-2) ◽  
pp. 1-13
Author(s):  
Iswar Mani Adhikari ◽  
Tanka Nath Dhamala

Evacuation planning problem deals with sending the maximum number of evacuees from the danger zone to the safe zone in minimum time as eciently as possible. The dynamic network flow models for various evacuation network topology have been found suitable for the solution of such a problem. Bus based evacuation planning problem (BEPP), as an important variant of the vehicle routing problem (VRP), is one of the emerging evacuation planning problems. In this work, an organized overview of this problem with a focus on their solution status is compactly presented. Arrival patterns of the evacuees including their transshipments at different pickup locations and their assignments are presented. Finally, a BEPP model and a solution for a special network are also proposed.


2015 ◽  
Vol 3 ◽  
pp. 44-53
Author(s):  
Phanindra Prasad Bhandari ◽  
Shree Ram Khadka

Evacuation planning is becoming crucial due to an increasing number of natural and human-created disasters over last few decades. One of the efficient ways to model the evacuation situation is a network flow optimization model. This model captures most of the necessities of the evacuation planning. Moreover, dynamic network contraflow modeling is considered a potential remedy to decrease the congestion due to its direction reversal property and it addresses the challenges of evacuation route planning. However, there do not exist satisfactory analytical results to this model for general network. In this paper, it is tried to provide an annotated overview on dynamic network contraflow problems related to evacuation planning and to incorporate models and solution strategies to them developed in this field to date.


The theory of flows is one of the most important parts of Combinatorial Optimization and it has various applications. In this paper we study optimum (maximum or minimum) flows in directed bipartite dynamic network and is an extension of article [9]. In practical situations, it is easy to see many time-varying optimum problems. In these instances, to account properly for the evolution of the underlying system overtime, we need to use dynamic network flow models. When the time is considered as a variable discrete values, these problems can be solved by constructing an equivalent, static time expanded network. This is a static approach.


2014 ◽  
Vol 13 (2s) ◽  
pp. 1-21 ◽  
Author(s):  
Xiaohang Wang ◽  
Mei Yang ◽  
Yingtao Jiang ◽  
Peng Liu ◽  
Masoud Daneshtalab ◽  
...  

2018 ◽  
Vol 14 (1) ◽  
pp. 107-114
Author(s):  
Phanindra Prasad Bhandari ◽  
Shree Ram Khadka

Shifting as many people as possible from disastrous area to safer area in a minimum time period in an efficient way is an evacuation planning problem (EPP). Modeling the evacuation scenarios reflecting the real world characteristics and investigation of an efficient solution to them have become a crucial due to rapidly increasing number of natural as well as human created disasters. EPPs modeled on network have been extensively studied and the various efficient solution procedures have been established where the flow function satisfies the flow conservation at each intermediate node. Besides this, the network flow problem in which flow may not be conserved at nodes necessarily could also be useful to model the evacuation planning problem. This paper proposes an efficient solution procedure for maximum flow evacuation planning problem of later kind on a single-source-single-sink dynamic network with integral arc capacities with holding capability of flow (evacuees) in the temporary shelter at intermediate nodes. Journal of the Institute of Engineering, 2018, 14(1): 107-114


2018 ◽  
Vol 113 (522) ◽  
pp. 519-533 ◽  
Author(s):  
Xi Chen ◽  
Kaoru Irie ◽  
David Banks ◽  
Robert Haslinger ◽  
Jewell Thomas ◽  
...  

1974 ◽  
Vol 11 (01) ◽  
pp. 94-101 ◽  
Author(s):  
Masao Nakamura

This paper is concerned with a class of dynamic network flow problems in which the amount of flow leaving node i in one time period for node j is the fraction pij of the total amount of flow which arrived at node i during the previous time period. The fraction pij whose sum over j equals unity may be interpreted as the transition probability of a finite Markov chain in that the unit flow in state i will move to state j with probability pij during the next period of time. The conservation equations for this class of flows are derived, and the limiting behavior of the flows in the network as related to the properties of the fractions Pij are discussed.


Sign in / Sign up

Export Citation Format

Share Document