scholarly journals Certain subclass of analytic functions with respect to symmetric points associated with conic region

2021 ◽  
Vol 6 (11) ◽  
pp. 12863-12877
Author(s):  
Huo Tang ◽  
◽  
Kadhavoor Ragavan Karthikeyan ◽  
Gangadharan Murugusundaramoorthy ◽  
◽  
...  

<abstract><p>The purpose of this paper is to introduce and study a new subclass of analytic functions with respect to symmetric points associated to a conic region impacted by Janowski functions. Also, the study has been extended to quantum calculus by replacing the ordinary derivative with a $ q $-derivative in the defined function class. Interesting results such as initial coefficients of inverse functions and Fekete-Szegö inequalities are obtained for the defined function classes. Several applications, known or new of the main results are also presented.</p></abstract>


Symmetry ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1275
Author(s):  
Qiuxia Hu ◽  
Hari M. Srivastava ◽  
Bakhtiar Ahmad ◽  
Nazar Khan ◽  
Muhammad Ghaffar Khan ◽  
...  

In this article, by utilizing the theory of quantum (or q-) calculus, we define a new subclass of analytic and multivalent (or p-valent) functions class Ap, where class Ap is invariant (or symmetric) under rotations. The well-known class of Janowski functions are used with the help of the principle of subordination between analytic functions in order to define this subclass of analytic and p-valent functions. This function class generalizes various other subclasses of analytic functions, not only in classical Geometric Function Theory setting, but also some q-analogue of analytic multivalent function classes. We study and investigate some interesting properties such as sufficiency criteria, coefficient bounds, distortion problem, growth theorem, radii of starlikeness and convexity for this newly-defined class. Other properties such as those involving convex combination are also discussed for these functions. In the concluding part of the article, we have finally given the well-demonstrated fact that the results presented in this article can be obtained for the (p,q)-variations, by making some straightforward simplification and will be an inconsequential exercise simply because the additional parameter p is obviously unnecessary.



Symmetry ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 2
Author(s):  
Dong Liu ◽  
Serkan Araci ◽  
Bilal Khan

To date, many interesting subclasses of analytic functions involving symmetrical points and other well celebrated domains have been investigated and studied. The aim of our present investigation is to make use of certain Janowski functions and a Mathieu-type series to define a new subclass of analytic (or invariant) functions. Our defined function class is symmetric under rotation. Some useful results like Fekete-Szegö functional, a number of sufficient conditions, radius problems, and results related to partial sums are derived.



2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
K. R. Karthikeyan ◽  
G. Murugusundaramoorthy ◽  
S. D. Purohit ◽  
D. L. Suthar

In this study, we familiarise a novel class of Janowski-type star-like functions of complex order with regard to j , k -symmetric points based on quantum calculus by subordinating with pedal-shaped regions. We found integral representation theorem and conditions for starlikeness. Furthermore, with regard to j , k -symmetric points, we successfully obtained the coefficient bounds for functions in the newly specified class. We also quantified few applications as special cases which are new (or known).



Symmetry ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 20
Author(s):  
Daniel Breaz ◽  
Kadhavoor R. Karthikeyan ◽  
Alagiriswamy Senguttuvan

A class of p-valent functions of complex order is defined with the primary motive of unifying the concept of prestarlike functions with various other classes of multivalent functions. Interesting properties such as inclusion relations, integral representation, coefficient estimates and the solution to the Fekete–Szegő problem are obtained for the defined function class. Further, we extended the results using quantum calculus. Several consequences of our main results are pointed out.



2021 ◽  
Vol 19 (1) ◽  
pp. 329-337
Author(s):  
Huo Tang ◽  
Kaliappan Vijaya ◽  
Gangadharan Murugusundaramoorthy ◽  
Srikandan Sivasubramanian

Abstract Let f k ( z ) = z + ∑ n = 2 k a n z n {f}_{k}\left(z)=z+{\sum }_{n=2}^{k}{a}_{n}{z}^{n} be the sequence of partial sums of the analytic function f ( z ) = z + ∑ n = 2 ∞ a n z n f\left(z)=z+{\sum }_{n=2}^{\infty }{a}_{n}{z}^{n} . In this paper, we determine sharp lower bounds for Re { f ( z ) / f k ( z ) } {\rm{Re}}\{f\left(z)\hspace{-0.08em}\text{/}\hspace{-0.08em}{f}_{k}\left(z)\} , Re { f k ( z ) / f ( z ) } {\rm{Re}}\{{f}_{k}\left(z)\hspace{-0.08em}\text{/}\hspace{-0.08em}f\left(z)\} , Re { f ′ ( z ) / f k ′ ( z ) } {\rm{Re}}\{{f}^{^{\prime} }\left(z)\hspace{-0.08em}\text{/}\hspace{-0.08em}{f}_{k}^{^{\prime} }\left(z)\} and Re { f k ′ ( z ) / f ′ ( z ) } {\rm{Re}}\{{f}_{k}^{^{\prime} }\left(z)\hspace{-0.08em}\text{/}\hspace{-0.08em}{f}^{^{\prime} }\left(z)\} , where f ( z ) f\left(z) belongs to the subclass J p , q m ( μ , α , β ) {{\mathcal{J}}}_{p,q}^{m}\left(\mu ,\alpha ,\beta ) of analytic functions, defined by Sălăgean ( p , q ) \left(p,q) -differential operator. In addition, the inclusion relations involving N δ ( e ) {N}_{\delta }\left(e) of this generalized function class are considered.



Symmetry ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1179
Author(s):  
Katarzyna Tra̧bka-Wiȩcław

In this paper, some coefficient problems for starlike analytic functions with respect to symmetric points are considered. Bounds of several coefficient functionals for functions belonging to this class are provided. The main aim of this paper is to find estimates for the following: coefficients, logarithmic coefficients, some cases of the generalized Zalcman coefficient functional, and some cases of the Hankel determinant.



2013 ◽  
Vol 2013 ◽  
pp. 1-5
Author(s):  
Huo Tang ◽  
Guan-Tie Deng

The main purpose of this paper is to derive some results associated with the quasi-Hadamard product of certainω-starlike andω-convex univalent analytic functions with respect to symmetric points.



1962 ◽  
Vol 14 ◽  
pp. 540-551 ◽  
Author(s):  
W. C. Royster

Let Σ represent the class of analytic functions(1)which are regular, except for a simple pole at infinity, and univalent in |z| > 1 and map |z| > 1 onto a domain whose complement is starlike with respect to the origin. Further let Σ- 1 be the class of inverse functions of Σ which at w = ∞ have the expansion(2).In this paper we develop variational formulas for functions of the classes Σ and Σ- 1 and obtain certain properties of functions that extremalize some rather general functionals pertaining to these classes. In particular, we obtain precise upper bounds for |b2| and |b3|. Precise upper bounds for |b1|, |b2| and |b3| are given by Springer (8) for the general univalent case, provided b0 =0.



Author(s):  
Young Jae Sim ◽  
Oh Sang Kwon

For real numbersαandβsuch that0≤α<1<β, we denote by𝒦α,βthe class of normalized analytic functions which satisfy the following two sided-inequality:α<ℜ1+zf′′z/f′z<β  z∈𝕌,where𝕌denotes the open unit disk. We find some relationships involving functions in the class𝒦(α,β). And we estimate the bounds of coefficients and solve the Fekete-Szegö problem for functions in this class. Furthermore, we investigate the bounds of initial coefficients of inverse functions or biunivalent functions.



2018 ◽  
Vol 2018 ◽  
pp. 1-7 ◽  
Author(s):  
Shahid Mahmood ◽  
Sarfraz Nawaz Malik ◽  
Sumbal Farman ◽  
S. M. Jawwad Riaz ◽  
Shabieh Farwa

In this work, we aim to introduce and study a new subclass of analytic functions related to the oval and petal type domain. This includes various interesting properties such as integral representation, sufficiency criteria, inclusion results, and the convolution properties for newly introduced class.



Sign in / Sign up

Export Citation Format

Share Document