Synthesis of nano precipitated calcium carbonate by using a carbonation process through a closed loop reactor

2016 ◽  
Vol 68 (1) ◽  
pp. 131-137 ◽  
Author(s):  
Thenepalli Thriveni ◽  
Ji Whan Ahn ◽  
Chilakala Ramakrishna ◽  
Young Jun Ahn ◽  
Choon Han
2007 ◽  
Vol 544-545 ◽  
pp. 733-736
Author(s):  
Moon Kwan Choi ◽  
Jin Sang Cho ◽  
Sung Min Joo ◽  
Jin Koo Park ◽  
Ji Whan Ahn ◽  
...  

The purpose of this work is to influence of CaO concentrations of 5.0 wt.% and 10.0 wt.%, slurry feeding rate of 200~400 /min, rotating rate of drum of 5,000 and 10,000 rpm, inlet and outlet temperature on the synthesis of Ca(OH)2 powder, and the synthesis of precipitated calcium carbonate by carbonation process using Ca(OH)2 prepared by spray drying method. As the feeding rate of slurry was increased, the particle size of Ca(OH)2 was decreased. Regardless of rotating rate of drum, when the concentration of CaO was 5.0 wt.% and 10.0 wt.%, the morphology of Ca(OH)2 showed spherical shape of 10~30 μm and 20~60 μm, respectively. The specific surface area of synthesized Ca(OH)2 was 27~30 m2/g. When the initial reaction temperature was 11 °C and 30 °C, the shape and particle size of precipitated calcium carbonate synthesized in the carbonation process showed the rectangular shape of 0.1~0.4 μm and the spindle shape of 0.5~1.0 μm, respectively.


2006 ◽  
Vol 510-511 ◽  
pp. 1026-1029
Author(s):  
Jin Sang Cho ◽  
Sung Min Joo ◽  
Sang Hwan Cho ◽  
Young Hwan Yu ◽  
Im Ho Kim ◽  
...  

The effect of the impurity ions Al3+, Fe3+ and Mg2+ on the formation yield and crystal properties of precipitated calcium carbonate(PCC) produced by the carbonation process was investigated in Ca(OH)2-H2O-CO2 system. The effect of the impurity ions Al3+, Fe3+ and Mg2+ on the formation yield using particle size distribution and morphology of PCC were discussed. The particle size distribution of PCC was increased with increase of impurity ions. The morphology was transformed in order of spheroidal, scalenohedral, rhombohedral calcite for Al3+, Fe3+ and rhombospheroidal, spherical, scalenohedral for Mg2+ with increase of impurity ions.


2012 ◽  
Vol 621 ◽  
pp. 111-116 ◽  
Author(s):  
Ze Li Chen ◽  
Hua Jing Zhu

This paper describes the precipitated calcium carbonate filler applied to paper industry, which was prepared by adding a specific crystal control agent. And a series of influencing factors in carbonation process was studied, such as carbonization temperature, concentration of milk of lime, carbon dioxide concentration and the crystal shape control dosage. Therefore the optimum conditions for preparation of chrysanthemum-shaped crystalline calcium carbonate were determined.


2007 ◽  
Vol 124-126 ◽  
pp. 815-818 ◽  
Author(s):  
Ji Whan Ahn ◽  
Jung Ah Kim ◽  
Kwang Suk You ◽  
Hwan Kim ◽  
Hee Chan Cho ◽  
...  

Precipitated Calcium Carbonate (PCC) is obtained through three processes; that of calcination, hydration, and carbonation. Thus, changes in each process condition determine the particle size or morphology of the mediums (calcium oxide and calcium hydroxide) as well as the product (PCC). To date, studies concerning precipitated calcium carbonate have mainly focused on the carbonation process, aimed at the manufacturing of PCC. Thus far, few studies on calcination or hydration have been conducted. Calcium hydroxide is regarded as the most important factor during the carbonation process. It is obtained through a hydration process. Therefore, in order to create the valuable PCC studies that center on the hydration process should be carried out. The present study seeks to investigate the effect of the hydration condition, particularly the temperature, on the synthesis characteristics of calcium hydroxide and aragonite PCC. The results show that the particle size of calcium hydroxide changes with variations in the initial hydration temperature. In particular, a higher initial temperature resulted in a larger particle size of the calcium hydroxide used in the synthesis. The particle size and yield of aragonite also increased when calcium hydroxide created at high temperatures was used. However, the water/solid ratio or total amount at the hydration time had no effect on the manufacturing process of aragonite.


2007 ◽  
Vol 544-545 ◽  
pp. 693-696
Author(s):  
Woon Kyoung Park ◽  
Ji Whan Ahn ◽  
Sang Jin Ko ◽  
Choon Han

Characteristics of nucleation and crystal growth of aragonite precipitated calcium carbonate in Ca(OH)2 – MgCl2 – CO2 system via a carbonation process is investigated. Aragonite precipitated calcium carbonate with high aspect ratio was synthesized at high reaction temperature and concentration of Ca(OH)2 slurry. The increase in crystal size with decreased in CO2 gas flow rate can be explained by a decrease in the nucleation rate and an increase in the crystal growth rate caused by a decrease in the dissolution rate to CO3 2- ion. In this study, crystal growth of aragonite was investigated by adding aragonite seed. It was found that crystal growth of aragonite precipitated calcium carbonate could be controlled by three-step carbonation process using reactants as the Ca(OH)2. Aragonite with an aspect ratio from 5 to 27 and diameter from 3μm to 24μm was thereby grown at a reaction temperature of 80°C and a CO2 flow rate of 50ml/min. It was also found that MgCl2 aqueous solution can be used again in the carbonation process for the synthesis of aragonite precipitated calcium carbonate.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Mostafa Nikkhah Dafchahi ◽  
Hossein Resalati ◽  
Seyed Majid Zabihzadeh ◽  
Noureddin Nazarnezhad ◽  
Ghasem Asadpour ◽  
...  

Abstract Precipitated calcium carbonate (PCC) filler is used in many industrial products like constructions, plastics, pharmaceutics, etc. In this study producing cationic precipitated calcium carbonate filler for paper industry was investigated. Hence, a cationic polyacrylamide and cationic corn starch have been incorporated into the PCC particles to produce a modified filler with cationic structure and improved hydrogen bonding ability with cellulose fibers. According to the FESEM and XRD results, cubic-like fillers with prominently calcite polymorph and a slight amount of aragonite were successfully produced from the industrial burnt lime using carbonation process. The presence of organic substances in the structure of the modified samples was confirmed by FT-IR analysis. Besides, based on the FESEM results, filler morphology and particle size could be affected by the polymer content. In conclusion, introducing cationic groups to mineral fillers could be considered as a possible strategy to overcome some detrimental effects of using mineral fillers in paper products.


2019 ◽  
Vol 7 (4.14) ◽  
pp. 163
Author(s):  
H M. Lahuri ◽  
N H. Berahim ◽  
M S. Onn ◽  
M G.M. Noh ◽  
R Othman

Precipitated calcium carbonate (PCC) is synthetic calcium carbonate that has high purity of more than 98 wt% of CaCO3 content.  Owing to its unique characteristic whereby its shape and size can be controlled to tailor to various applications, PCC has seen great demands in many industries such as paper, paint, plastic, food, ceramics, cosmetics, pharmaceutical, and many others.  PCC can be synthesized via various methods and the most often used method in industry is via carbonation process.  This process has caught interest of the oil and gas industry for utilizing existing carbon dioxide waste from plant processes.  Precipitation of PCC is carried out using hydrated lime under various conditions at different gas purity (1 mol% CH4 + 99 mol% CO2 , 40 mol% CH4  + 60 mol% CO2 ), different gas flowrate, and different stirring rate.  All experiments are carried out using 1 litre of ionic solution at ambient conditions.  All samples are characterized using Field Emission Scanning Electron Microscopy (FESEM), Particle Size Distribution, X-Ray Diffraction (XRD), and X-Ray Fluorescence (XRF).  FESEM analysis shows different surface morphology for different methane content with calcite formation.  The particle size for all PCC produced at different parameters are comparable at the range 5-9 microns depending on the mixing rate used whereas XRF results indicate very high purity of CaCO3 of more than 99 wt%. 


CrystEngComm ◽  
2020 ◽  
Vol 22 (11) ◽  
pp. 1970-1984 ◽  
Author(s):  
Meisam Ghiasi ◽  
Mahmoud Abdollahy ◽  
Mohammad Reza Khalesi ◽  
Ehsan Ghiasi

The morphology of precipitated calcium carbonate is a function of conductivity.


Sign in / Sign up

Export Citation Format

Share Document