Quantum Metrology of Electrical Quantities and Mass

2021 ◽  
Vol 30 (3) ◽  
pp. 17-25
Author(s):  
Mun-Seog KIM ◽  
Dong-Hun CHAE ◽  
Kwang-Cheol LEE

The new International System of Units (SI) became effective on 20 May 2019. In the new SI, the complete system of units can be traced to seven fixed values of the fundamental constants, not to seven base units as in the old system. Electrical metrology has two important quantum mechanical foundations. Here, we introduce the basics and the metrological applications of the Josephson effect and the quantum Hall effect, which play key roles in linking electrical quantities to the fundamental constants, including the Planck constant h, the elementary charge e, and the transition frequency of cesium 133 ΔνCs. Finally, we discuss the redefinition of the kilogram as one of the important examples of electrical metrology based on quantum physics.

2011 ◽  
Vol 47 (2) ◽  
pp. 241-246
Author(s):  
G. Kaptay

It is shown here that five base quantities (and the corresponding five base units) of nature are sufficient to define all derived quantities (and their units) and to describe all natural phenomena. The base quantities (and their base units) are: length (m), mass (kg), time (s), temperature (K) and electric charge (C). The amount of substance (mole) is not taken as a base quantity of nature and the Avogadro constant is not considered as a fundamental constant of nature, as they are both based on an arbitrary definition (due to the arbitrary value of 0.012 kg for the mass of 1 mole of C-12 isotope). Therefore, the amount of substance (mole) is moved from the list of base quantities to the category of the supplementary units (to be re-created after its abrogation in 1995). Based on its definition, the luminous intensity (cd) is not a base quantity (unit), therefore it is moved to the list of derived quantities (units). The ampere and coulomb are exchanged by places in the list of base and derived units, as ampere is a speed of coulombs (but SI defines meter, not its speed as a base unit). The five base quantities are re-defined in this paper by connecting them to five fundamental constants of nature (the most accurately known frequency of the hydrogen atom, the speed of light, the Planck constant, the Boltzmann constant and the elementary charge) with their numerical values fixed in accordance with their CODATA 2006 values (to be improved by further experiments).


Author(s):  
Ian M. Mills ◽  
Peter J. Mohr ◽  
Terry J. Quinn ◽  
Barry N. Taylor ◽  
Edwin R. Williams

We review the proposal of the International Committee for Weights and Measures (Comité International des Poids et Mesures, CIPM), currently being considered by the General Conference on Weights and Measures (Conférences Générales des Poids et Mesures, CGPM), to revise the International System of Units (Le Système International d'Unitès, SI). The proposal includes new definitions for four of the seven base units of the SI, and a new form of words to present the definitions of all the units. The objective of the proposed changes is to adopt definitions referenced to constants of nature, taken in the widest sense, so that the definitions may be based on what are believed to be true invariants. In particular, whereas in the current SI the kilogram, ampere, kelvin and mole are linked to exact numerical values of the mass of the international prototype of the kilogram, the magnetic constant (permeability of vacuum), the triple-point temperature of water and the molar mass of carbon-12, respectively, in the new SI these units are linked to exact numerical values of the Planck constant, the elementary charge, the Boltzmann constant and the Avogadro constant, respectively. The new wording used expresses the definitions in a simple and unambiguous manner without the need for the distinction between base and derived units. The importance of relations among the fundamental constants to the definitions, and the importance of establishing a mise en pratique for the realization of each definition, are also discussed.


Author(s):  
Barry N. Taylor

A revised International System of Units (SI) is expected to be established by the 26th General Conference on Weights and Measures when it convenes in November 2018 and to be put into practice starting on 20 May 2019, World Metrology Day. In consequence, the article published in this journal in 2011, “The Current SI Seen from the Perspective of the Proposed New SI,” is updated in this paper, which provides an opportunity to again demonstrate the usefulness of the quantity calculus in dealing with quantities and units. The quantity calculus and the seven defining constants of the current and revised SI are reviewed, and expressions for the seven current and revised SI base units are given. Relationships between the magnitudes of revised and current SI units and expressions for the numerical values of current SI defining constants expressed in revised SI units are also obtained using the quantity calculus.


Author(s):  
B. Fellmuth ◽  
J. Fischer ◽  
G. Machin ◽  
S. Picard ◽  
P. P. M. Steur ◽  
...  

In 2018, it is expected that there will be a major revision of the International System of Units (SI) which will result in all of the seven base units being defined by fixing the values of certain atomic or fundamental constants. As part of this revision, the kelvin, unit of thermodynamic temperature, will be redefined by assigning a value to the Boltzmann constant k . This explicit-constant definition will define the kelvin in terms of the SI derived unit of energy, the joule. It is sufficiently wide to encompass any form of thermometry. The planned redefinition has motivated the creation of an extended mise en pratique (‘practical realization’) of the definition of the kelvin ( MeP -K), which describes how the new definition can be put into practice. The MeP -K incorporates both of the defined International Temperature Scales (ITS-90 and PLTS-2000) in current use and approved primary-thermometry methods for determining thermodynamic temperature values. The MeP -K is a guide that provides or makes reference to the information needed to perform measurements of temperature in accord with the SI at the highest level. In this article, the background and the content of the extended second version of the MeP -K are presented.


Author(s):  
M. Stock

Since 1889, the international prototype of the kilogram has served as the definition of the unit of mass in the International System of Units (SI). It is the last material artefact to define a base unit of the SI, and it influences several other base units. This situation is no longer acceptable in a time of ever-increasing measurement precision. It is therefore planned to redefine the unit of mass by fixing the numerical value of the Planck constant. At the same time three other base units, the ampere, the kelvin and the mole, will be redefined. As a first step, the kilogram redefinition requires a highly accurate determination of the Planck constant in the present SI system, with a relative uncertainty of the order of 1 part in 10 8 . The most promising experiment for this purpose, and for the future realization of the kilogram, is the watt balance. It compares mechanical and electrical power and makes use of two macroscopic quantum effects, thus creating a relationship between a macroscopic mass and the Planck constant. In this paper, the operating principle of watt balance experiments is explained and the existing experiments are reviewed. An overview is given of all available experimental determinations of the Planck constant, and it is shown that further investigation is needed before the redefinition of the kilogram can take place. Independent of this requirement, a consensus has been reached on the form that future definitions of the SI base units will take.


Author(s):  
Iurii Pavlenko ◽  
Alexander Kolbasin ◽  
Olena Vаsileva

Increasing requirements for the accuracy of measurements have led to the need to revise the existing International System of Units (SI). The important element of the SI-2019 reform is “the establishment of the SI base units through seven defining constants, the numerical values of which are fixed”. The approach to the establishment of the measurement units has fundamentally changed. If earlier a definition was given of how the unit is realized, now only the exact numerical values of the fundamental constants are fixed, and their values are expressed in the corresponding SI units. Measurement units are determined on the basis of known physical laws, which include certain fundamental constants. The article analyzes the changes in SI-2019 related to electrical measurements, and also discusses the prospects for the development of accurate electrical measurements.


2021 ◽  
Author(s):  
Diederik Sybolt Wiersma ◽  
Giovanni Mana

AbstractAir Canada managed to have a passenger aircraft run out of fuel in mid-air due to confusion about metric units (Stephenson in Mars climate orbiter mishap investigation board phase I report, NASA, 1999), and NASA lost an entire spacecraft due to a misunderstanding amongst engineers about the units used in the propulsion system design (Witkin in Jet’s fuel ran out after metric conversion errors, The New York Times, 1983). Measurements only make sense if the units are correct and well-defined. A unit of measurement is a definite magnitude of a quantity, defined by convention or law. Any other quantity of that kind can then be expressed as a multiple or submultiple of the unit of measurement. The Egyptians used the Farao as definite magnitude, while many years later, the french revolutionists introduced the earth as a reference and laid the foundations for the modern decimal system. Since recently, we have a truly universal and stable system that uses physics’s natural constants and laws to define the base units of measurement. This paper explains how this new concept works and how it is implemented in practice.


Author(s):  
Christian J Bordé

Over the past 40 years, a number of discoveries in quantum physics have completely transformed our vision of fundamental metrology. This revolution starts with the frequency stabilization of lasers using saturation spectroscopy and the redefinition of the metre by fixing the velocity of light c . Today, the trend is to redefine all SI base units from fundamental constants and we discuss strategies to achieve this goal. We first consider a kinematical frame, in which fundamental constants with a dimension, such as the speed of light c , the Planck constant h , the Boltzmann constant k B or the electron mass m e can be used to connect and redefine base units. The various interaction forces of nature are then introduced in a dynamical frame, where they are completely characterized by dimensionless coupling constants such as the fine structure constant α or its gravitational analogue α G . This point is discussed by rewriting the Maxwell and Dirac equations with new force fields and these coupling constants. We describe and stress the importance of various quantum effects leading to the advent of this new quantum metrology. In the second part of the paper, we present the status of the seven base units and the prospects of their possible redefinitions from fundamental constants in an experimental perspective. The two parts can be read independently and they point to these same conclusions concerning the redefinitions of base units. The concept of rest mass is directly related to the Compton frequency of a body, which is precisely what is measured by the watt balance. The conversion factor between mass and frequency is the Planck constant, which could therefore be fixed in a realistic and consistent new definition of the kilogram based on its Compton frequency. We discuss also how the Boltzmann constant could be better determined and fixed to replace the present definition of the kelvin.


Author(s):  
Neil M. Zimmerman ◽  
David B. Newell

We discuss how the impending redefinition of the SI system of units might affect the ability of students to understand the link between the units and the new system. The redefinition will no longer define a set of base units, but rather a set of constants of nature, such as the elementary charge, e. We point out that this list of constants need not be the only way to introduce students to the subject, either in class or in textbooks. We suggest an alternative way to introduce high school and undergraduate students to the redefined SI, by suggesting a list of experiments for some units; this list would be completely compatible with the redefined SI, and would have all of the same scientific and technological advantages. We demonstrate by questionnaire results that this alternative is more appealing to students. We hope to spur a discussion amongst teachers regarding this important topic for high school and undergraduate physics courses.


2020 ◽  
Vol 87 (4) ◽  
pp. 258-265
Author(s):  
Luca Callegaro

AbstractThe revision of the International System of Units (SI), implemented since 20 May 2019, has redefined the unit of electric current, the ampere ( A), linking it to a fixed value of the elementary charge. This paper discusses the new definition and the realisation of the electrical units by quantum electrical metrology standards, which every year become more and more accessible, reliable and user friendly.


Sign in / Sign up

Export Citation Format

Share Document