Implementation of Risk and Working Environment Analyses for Offshore Installations on the Norwegian Continental Shelf

Author(s):  
K W Yang ◽  
Author(s):  
J. V. Sharp ◽  
G. Ersdal ◽  
D. Galbraith

An increasing number of offshore installations are in the life extension stage of life, with ageing processes needing to be taken into account. This is particularly important for structural integrity. Capability Maturity Modelling enables the levels of maturity in processes associated with the management of ageing to be identified and improved if required. The paper describes the model and how it has been used for assessing the management of structural integrity for installations on the Norwegian Continental Shelf.


Author(s):  
Martin Hassel ◽  
Ingrid Bouwer Utne ◽  
Jan Erik Vinnem

This article presents a new risk model for estimating the probability of allision risk (the impact between a ship under way and a stationary installation) from passing vessels on the Norwegian Continental Shelf (NCS). Offshore petroleum operators on the NCS are required by the Norwegian Petroleum Safety Authority (PSA) to perform risk assessments to estimate the probability of impacts between ships and offshore installations, both for field related and passing (merchant) vessels. This has typically been done using the aging industry standard COLLIDE risk model, but this article presents a new risk model based on a Bayesian Belief Network (BBN) that can replace the old COLLIDE model for passing vessels. The new risk model incorporates a wider range of risk influencing factors (RIFs) and enables a holistic and detailed analysis of risk factors, barrier elements and dependencies. Even though the risk of allision with passing vessels is very small, the potential consequences can be critical. The new risk model is more transparent and provides a better understanding of the mechanisms behind allision risk calculations. The results from the new model are aligned with industry expectations, indicating an overall satisfactory performance. The article discusses several key elements, such as the use of expert judgement to estimate RIFs when no empirical data is available, model sensitivity, and a comparative assessment of the new risk model to the old COLLIDE model.


Author(s):  
Trond Sundby ◽  
Kjell Arild Anfinsen

The Petroleum Safety Authority Norway (PSA) is an independent government regulator responsible for safety, emergency preparedness and the working environment in the Norwegian petroleum industry. Norway’s regulations for petroleum operations offshore and on land are risk-based, and give great emphasis to principles for reducing health, safety and environmental (HSE) risk. They have been developed over more than 40 years, changing from detailed prescriptive regulations in the early days to the present requirements, which are largely formulated in performance-based (functional) terms. They specify requirements for the various aspects, characteristics or qualities which a product, process or service must possess. In our regulations there are requirements for reporting incidents and specifically to report on damages to load-bearing structures and pipeline systems. About 2900 incidents with risers and pipelines were reported on the Norwegian Continental Shelf (NCS) from 1975 to January 2017. Of these, 2/3 related to pipelines and 1/3 to risers, and they were of varying degrees of severity. The incidents with highest risk for personnel concerned risers and more than 80 reported major incidents involving flexible risers occurred in the period from 2000–2016. This paper will briefly summarise the development of the regulations and give examples from the pipeline regulations and the way the PSA follows up the industry today. We will also present statistical data of incidents related to risers. Since the start of the trends in risk level project (RNNP) on the Norwegian Continental Shelf (NCS) in 1999–2000 there has been 84 reported riser incidents (classified as major in the PSA RNNP-project) where most of those incidents are related to flexibles. There has been no major accident related to risers on the NCS in the same period and very few leaks. 8 of 11 reported leaks for pipelines and risers within the safety zone has been from flexible risers, with relatively low leak rates.


2019 ◽  
Author(s):  
Sarah Gasda ◽  
Ivar Aavatsmark ◽  
Bahman Bohloli ◽  
Helge Hellevang ◽  
Jan Nordbotten ◽  
...  

2021 ◽  
Author(s):  
Subhadeep Sarkar ◽  
Mathias Horstmann ◽  
Tore Oian ◽  
Piotr Byrski ◽  
George Lawrence ◽  
...  

Abstract One of the crucial components of well integrity evaluation in offshore drilling is to determine the cement bond quality assuring proper hydraulic sealing. On the Norwegian Continental Shelf (NCS) an industry standard as informative reference imposes verification of cement length and potential barriers using bonding logs. Traditionally, for the last 50 years, wireline (WL) sonic tools have been extensively used for this purpose. However, the applicability of logging-while-drilling (LWD) sonic tools for quantitative cement evaluation was explored in the recent development drilling campaign on the Dvalin Field in the Norwegian Sea, owing to significant advantages on operational efficiency and tool conveyance in any well trajectory. Cement bond evaluation from conventional peak-to-peak amplitude method has shown robust results up to bond indexes of 0.6 for LWD sonic tools. Above this limit, the casing signal is smaller than the collar signal and the amplitude method loses sensitivity to bonding. This practical challenge in the LWD realm was overcome through the inclusion of attenuation rate measurements, which responds accordingly in higher bonding environments. The two methods are used in a hybrid approach providing a full range quantitative bond index (QBI) introduced by Izuhara et al. (2017). In order to conform with local requirements related to well integrity and to ascertain the QBI potential from LWD monopole sonic, a wireline cement bond log (CBL) was acquired in the first well of the campaign for comparison. This enabled the strategic deployment of LWD QBI service in subsequent wells. LWD sonic monopole data was acquired at a controlled speed of 900ft/h. The high-fidelity waveforms were analyzed in a suitable time window and both amplitude- and attenuation-based bond indexes were derived. The combined hybrid bond index showed an excellent match with the wireline reference CBL, both in zones of high as well as lower cement bonding. The presence of formation arrivals was also in good correlation with zones of proper bonding distinguishable on the QBI results. This established the robustness of the LWD cement logging and ensured its applicability in the rest of the campaign which was carried out successfully. While the results from LWD cement evaluation service are omnidirectional, it comes with a wide range of benefits related to rig cost or conveyance in tough borehole trajectories. Early evaluation of cement quality by LWD sonic tools helps to provide adequate time for taking remedial actions if necessary. The LWD sonic as part of the drilling BHA enables this acquisition and service in non-dedicated runs, with the possibility of multiple passes for observing time-lapse effects. Also, the large sizes of LWD tools relative to the wellbore ensures a lower signal attenuation in the annulus and more effective stabilization, thereby providing a reliable bond index.


Sign in / Sign up

Export Citation Format

Share Document