Field observations of two species of invasive ants, Linepithema humile Mayr, 1868 and Tetramorium bicarinatum Nylander, 1846 (Hymenoptera: Formicidae), at a suburban park in Southern California

2011 ◽  
Vol 87 (1) ◽  
pp. 57-61
Author(s):  
Michael J. Martinez ◽  
Eric M. Weis
2021 ◽  
Author(s):  
◽  
Alexandra Sébastien

<p>Invasive species can lead to major economic and ecological issues. For this reason, biological controls are being developed in order to help with invasive species population management. Pathogenic bacteria and viruses offer good biological control opportunities as both micro-organisms have played a role in natural population declines. However, beneficial bacteria and viruses associated with the targeted invasive species may interfere with biological controls, by protecting their hosts from infections. Previous knowledge on both pathogenic and beneficial bacteria and viruses present in invasive species may then support the development of an active and efficient biological control.  The Argentine ant, Linepithema humile, is a South American invasive ant species that has successfully spread over five continents. The ants were introduced to New Zealand after a complex invasion path, from Argentina their home range to Europe, then to Australia and finally to New Zealand. In their new environments, invasive Argentine ants affect species diversity and can cause agricultural losses. In the absence of any biological controls, the Argentine ant population is controlled by chemical sprays and poison baits. Management of these invasive ants in New Zealand is estimated to cost NZ$ 60 million a year. The Argentine ant population in New Zealand was reported to have unexpectedly declined. It was hypothesised that pathogens were the cause of this population collapse.  In this study, bacteria and viruses present in the invasive ants were investigated using 454 sequencing and Illumina sequencing for future developments of possible biological controls for the Argentine ants, and a better understanding of the observed population decline in New Zealand. Bacterial diversity present in Argentine ants either declined or diminished along the invasion pathway. At the same time, the invasive ants maintained a core of nine bacteria genera, including Lactobacillus and Gluconobacter, two bacterial genera with members known for their beneficial associations with honey bees. The presence of these core bacteria may have participated in the success of Argentine ants in their new environments. In the laboratory, the use of ampicillin and gentamicin antibiotics on the ants increased bacterial diversity present in the ants. Furthermore, ampicillin, kanamycin and spectinomycin antibiotic treatments increased ant survival but did not affect the ant fitness or intra-species aggressiveness. Only spectinomycin treated ants presented a higher level of inter-species aggressiveness. Bacterial diversity may play an important role in the ant health and at length population dynamics.  Finally, Argentine ants are the hosts of two viruses: the Deformed wing virus (DWV) involved in colony collapse disorder in honey bees, and Linepithema humile virus 1 (LHUV-1), a new virus related to DWV. Both viruses actively replicate within the ants, indicating a possible reservoir role of the ants. However, the effects of the viruses on the ants are not yet known. Further viral infection in the laboratory under different stress conditions and / or antibiotic treatment will give an insight in the role played by these viruses in the observed population collapse of Argentine ants in New Zealand. LHUV-1 may offer a possibility in the development of the first biological control for Argentine ants, depending on its specificity and its effects.  This dissertation provides a first insight in the core bacteria as well as potential harmful viruses present in Argentine ants. These bacteria and viruses may play a role in the ant population dynamics. Invasive species may co-introduce harmful pathogens with them, and participate to the spread of local ones. The pathogens may affect both invasive ants and native species population dynamics.</p>


2015 ◽  
Vol 11 (9) ◽  
pp. 20150610 ◽  
Author(s):  
Alexandra Sébastien ◽  
Philip J. Lester ◽  
Richard J. Hall ◽  
Jing Wang ◽  
Nicole E. Moore ◽  
...  

When exotic animal species invade new environments they also bring an often unknown microbial diversity, including pathogens. We describe a novel and widely distributed virus in one of the most globally widespread, abundant and damaging invasive ants (Argentine ants, Linepithema humile ). The Linepithema humile virus 1 is a dicistrovirus, a viral family including species known to cause widespread arthropod disease. It was detected in samples from Argentina, Australia and New Zealand. Argentine ants in New Zealand were also infected with a strain of Deformed wing virus common to local hymenopteran species, which is a major pathogen widely associated with honeybee mortality. Evidence for active replication of viral RNA was apparent for both viruses. Our results suggest co-introduction and exchange of pathogens within local hymenopteran communities. These viral species may contribute to the collapse of Argentine ant populations and offer new options for the control of a globally widespread invader.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Tetsu Yasashimoto ◽  
Masayuki K. Sakata ◽  
Tomoya Sakita ◽  
Satoko Nakajima ◽  
Mamiko Ozaki ◽  
...  

AbstractAlien ant species (Formicidae, Hymenoptera) cause serious damage worldwide. Early detection of invasion and rapid management are significant for controlling these species. However, these attempts are sometimes hindered by the need for direct detection techniques, such as capture, visual observation, or morphological identification. In this study, we demonstrated that environmental DNA (eDNA) analysis can be used as a monitoring tool for alien ants using Linepithema humile (Argentine ant), one of the most invasive ants, as a model species. We designed a new real-time PCR assay specific to L. humile and successfully detected eDNA from the surface soil. The reliability of eDNA analysis was substantiated by comparing eDNA detection results with traditional survey results. Additionally, we examined the relationship between eDNA concentration and distance from nests and trails. Our results support the effectiveness of eDNA for alien ant monitoring and suggest that this new method could improve our ability to detect invasive ant species.


Author(s):  
Gema Trigos-Peral ◽  
Sílvia Abril ◽  
Elena Angulo

AbstractTwo of the world’s most invasive ants, Linepithema humile and Lasius neglectus, are destined to overlap in range as they continue to spread throughout Europe. Although L. humile arrived first, and is therefore more numerically abundant, L. neglectus is the more behaviorally dominant of the two. We performed lab trials to determine whether L. humile could use numerical abundance to overcome the behavioral dominance of L. neglectus and whether the ants’ behavioral patterns shifted when the species co-occurred. We found that L. neglectus was more aggressive when less abundant, whereas the opposite was true of L. humile. When L. neglectus was outnumbered, it employed aggressive behaviors, such as biting or chemical attacks, more frequently than L. humile; it also utilized a behavioral sequence that included mandible opening and biting. Our results for these species support the hypothesis that species modulate their behavior towards competitors, which facilitates the understanding of how multiple invasive ant species can co-occur in a given area. Moreover, our study shows that the co-occurrence of invasive species could result from the use of two strategies: (1) the Bourgeois strategy, in which aggressiveness changes based on numerical dominance and (2) the dear-enemy strategy, in which aggressiveness is reduced when competitors co-occur. Since these strategies may lead to territory partitioning, we suggest that the behavioral flexibility displayed by both species when they overlap may allow local co-occurrence and increase their likelihood of co-occurrence during their range expansion in Europe, which could have a negative cumulative impact on invaded areas.


2017 ◽  
Vol 35 (1-2) ◽  
pp. 133-141
Author(s):  
David A Donoso ◽  
Giovanni Onore ◽  
Giovanni Ramón ◽  
John E Lattke

 El manejo de las especies invasoras es considerado uno de los grandes desafíos que impone el Cambio Global a nuestras sociedades, junto con la deforestación y el calentamiento de la atmósfera. Se conoce muy poco sobre las hormigas invasoras en el Ecuador continental, incluso cuando se ha demostrado en el resto del mundo su agresividad, los impactos negativos en los ecosistemas y las pérdidas económicas que causan. La mayoría de registros de hormigas invasoras en el Ecuador provienen de las Islas Galápagos y no existe un inventario de ellas para el Ecuador continental. Aquàcompilamos registros de hormigas invasoras presentes en la literatura y en colecciones entomológicas locales para crear la primera lista de hormigas invasoras presentes en el Ecuador continental. Se registra la presencia de un total de 16 especies de hormigas invasoras. De estas, diez especies son extranjeras, pero invasoras en el Ecuador; y seis especies son nativas en el Ecuador e invasoras en el exterior. Proveemos los primeros registros para Ecuador continental de Cardiocondyla minutior, Monomorium floricola, Monomorium pharaonis, Tapinoma melanocephalum, y Tetramorium bicarinatum. Además, los registros de Cardiocondyla wroughtonii y Tetramorium lucayanum son los primeros para el país.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Grzegorz Buczkowski ◽  
Theresa C. Wossler

AbstractInvasive ants are major agricultural and urban pests and a significant concern in conservation areas. Despite long history of control and eradication efforts, invasive ants continue to spread around the globe driven by a multitude of synergistic factors. Lack of effective management tools is one of the biggest challenges in controlling invasive ants. The goal of the current study was to improve the efficacy and safety of ant management and to develop effective control strategies for sensitive conservation areas. We utilized the Argentine ant (Linepithema humile) as a model system to evaluate a target-specific pesticide delivery system that exploits the interconnected nature of social insect colonies to distribute a toxicant effectively within the colony. The approach, based entirely on horizontal transfer, takes advantage of various levels of social interactions in ant colonies to disseminate a toxicant throughout the colony. Results of laboratory studies coupled with LC/MS/MS analysis demonstrate that fipronil is toxic to Argentine ants in extremely small (nanogram) quantities and is efficiently transferred from a single treated donor to multiple recipients, causing significant secondary mortality. A field study was conducted in native fynbos plots invaded by Argentine ants. The study consisted of collecting naïve workers, treating them with fipronil, and releasing them within invaded plots. Results show that the release of fipronil-treated ants reduced Argentine ant abundance by >90% within 24 h. The horizontal transfer approach offers environmental benefits with regard to pesticide use in ecologically sensitive environments and appears ideally suited for ant management in conservation areas.


Sign in / Sign up

Export Citation Format

Share Document