scholarly journals Identification‐ and singularity‐robust inference for moment condition models

2019 ◽  
Vol 10 (4) ◽  
pp. 1703-1746 ◽  
Author(s):  
Donald W. K. Andrews ◽  
Patrik Guggenberger

This paper introduces a new identification‐ and singularity‐robust conditional quasi‐likelihood ratio (SR‐CQLR) test and a new identification‐ and singularity‐robust Anderson and Rubin (1949) (SR‐AR) test for linear and nonlinear moment condition models. Both tests are very fast to compute. The paper shows that the tests have correct asymptotic size and are asymptotically similar (in a uniform sense) under very weak conditions. For example, in i.i.d. scenarios, all that is required is that the moment functions and their derivatives have 2 +  γ bounded moments for some γ > 0. No conditions are placed on the expected Jacobian of the moment functions, on the eigenvalues of the variance matrix of the moment functions, or on the eigenvalues of the expected outer product of the (vectorized) orthogonalized sample Jacobian of the moment functions. The SR‐CQLR test is shown to be asymptotically efficient in a GMM sense under strong and semi‐strong identification (for all k ≥  p, where k and p are the numbers of moment conditions and parameters, respectively). The SR‐CQLR test reduces asymptotically to Moreira's CLR test when p = 1 in the homoskedastic linear IV model. The same is true for p ≥ 2 in most, but not all, identification scenarios. We also introduce versions of the SR‐CQLR and SR‐AR tests for subvector hypotheses and show that they have correct asymptotic size under the assumption that the parameters not under test are strongly identified. The subvector SR‐CQLR test is shown to be asymptotically efficient in a GMM sense under strong and semi‐strong identification.

2014 ◽  
Vol 32 (1) ◽  
pp. 30-70 ◽  
Author(s):  
Xiaohong Chen ◽  
David T. Jacho-Chávez ◽  
Oliver Linton

We establish the consistency and asymptotic normality for a class of estimators that are linear combinations of a set of$\sqrt n$-consistent nonlinear estimators whose cardinality increases with sample size. The method can be compared with the usual approaches of combining the moment conditions (GMM) and combining the instruments (IV), and achieves similar objectives of aggregating the available information. One advantage of aggregating the estimators rather than the moment conditions is that it yields robustness to certain types of parameter heterogeneity in the sense that it delivers consistent estimates of the mean effect in that case. We discuss the question of optimal weighting of the estimators.


2012 ◽  
Vol 29 (1) ◽  
pp. 90-114 ◽  
Author(s):  
Ted Juhl ◽  
Zhijie Xiao

This paper considers testing for moment condition instability for a wide variety of models that arise in econometric applications. We propose a nonparametric test based on smoothing the moment conditions over time. The resulting test takes the form of a U-statistic and has a limiting normal distribution. The proposed test statistic is not affected by changes in the distribution of the data, so long as certain simple regularity conditions hold. We examine the performance of the test through a small Monte Carlo experiment.


2021 ◽  
Vol 12 (1) ◽  
pp. 77-108 ◽  
Author(s):  
Timothy B. Armstrong ◽  
Michal Kolesár

We consider inference in models defined by approximate moment conditions. We show that near‐optimal confidence intervals (CIs) can be formed by taking a generalized method of moments (GMM) estimator, and adding and subtracting the standard error times a critical value that takes into account the potential bias from misspecification of the moment conditions. In order to optimize performance under potential misspecification, the weighting matrix for this GMM estimator takes into account this potential bias and, therefore, differs from the one that is optimal under correct specification. To formally show the near‐optimality of these CIs, we develop asymptotic efficiency bounds for inference in the locally misspecified GMM setting. These bounds may be of independent interest, due to their implications for the possibility of using moment selection procedures when conducting inference in moment condition models. We apply our methods in an empirical application to automobile demand, and show that adjusting the weighting matrix can shrink the CIs by a factor of 3 or more.


2017 ◽  
Vol 34 (1) ◽  
pp. 186-227 ◽  
Author(s):  
Denis Chetverikov

Many economic models yield conditional moment inequalities that can be used for inference on parameters of these models. In this paper, I construct new tests of parameter hypotheses in conditional moment inequality models based on studentized kernel estimates of moment functions. The tests automatically adapt to the unknown smoothness of the moment functions, have uniformly correct asymptotic size, and are rate-optimal against certain classes of alternatives. Some existing tests have nontrivial power against n−1/2-local alternatives of a certain type whereas my methods only allow for nontrivial testing against (n / log n)−1/2-local alternatives of this type. There exist, however, large classes of sequences of well-behaved alternatives against which the tests developed in this paper are consistent and those tests are not.


2021 ◽  
Vol 9 (1) ◽  
pp. 65-89
Author(s):  
Zhenzhen Yang ◽  
Yajuan Yang ◽  
Jiawei Sun ◽  
Baode Li

Abstract Let p(·) : ℝ n → (0, ∞] be a variable exponent function satisfying the globally log-Hölder continuous and let Θ be a continuous multi-level ellipsoid cover of ℝ n introduced by Dekel et al. [12]. In this article, we introduce highly geometric Hardy spaces Hp (·)(Θ) via the radial grand maximal function and then obtain its atomic decomposition, which generalizes that of Hardy spaces Hp (Θ) on ℝ n with pointwise variable anisotropy of Dekel et al. [16] and variable anisotropic Hardy spaces of Liu et al. [24]. As an application, we establish the boundedness of variable anisotropic singular integral operators from Hp (·)(Θ) to Lp (·)(ℝ n ) in general and from Hp (·)(Θ) to itself under the moment condition, which generalizes the previous work of Bownik et al. [6] on Hp (Θ).


Sensors ◽  
2021 ◽  
Vol 21 (15) ◽  
pp. 4950
Author(s):  
Gianmarco Romano

The moment-based M2M4 signal-to-noise (SNR) estimator was proposed for a complex sinusoidal signal with a deterministic but unknown phase corrupted by additive Gaussian noise by Sekhar and Sreenivas. The authors studied its performances only through numerical examples and concluded that the proposed estimator is asymptotically efficient and exhibits finite sample super-efficiency for some combinations of signal and noise power. In this paper, we derive the analytical asymptotic performances of the proposed M2M4 SNR estimator, and we show that, contrary to what it has been concluded by Sekhar and Sreenivas, the proposed estimator is neither (asymptotically) efficient nor super-efficient. We also show that when dealing with deterministic signals, the covariance matrix needed to derive asymptotic performances must be explicitly derived as its known general form for random signals cannot be extended to deterministic signals. Numerical examples are provided whose results confirm the analytical findings.


Author(s):  
R. MUKUNDAN

Geometric moments have been used in several applications in the field of Computer Vision. Many techniques for fast computation of geometric moments have therefore been proposed in the recent past, but these algorithms mainly rely on properties of the moment integral such as piecewise differentiability and separability. This paper explores an alternative approach to approximating the moment kernel itself in order to get a notable improvement in computational speed. Using Schlick's approximation for the normalized kernel of geometric moments, the computational overhead could be significantly reduced and numerical stability increased. The paper also analyses the properties of the modified moment functions, and shows that the proposed method could be effectively used in all applications where normalized Cartesian moment kernels are used. Several experimental results showing the invariant characteristics of the modified moments are also presented.


2016 ◽  
Vol 33 (5) ◽  
pp. 1046-1080 ◽  
Author(s):  
Donald W.K. Andrews ◽  
Patrik Guggenberger

An influential paper by Kleibergen (2005, Econometrica 73, 1103–1123) introduces Lagrange multiplier (LM) and conditional likelihood ratio-like (CLR) tests for nonlinear moment condition models. These procedures aim to have good size performance even when the parameters are unidentified or poorly identified. However, the asymptotic size and similarity (in a uniform sense) of these procedures have not been determined in the literature. This paper does so.This paper shows that the LM test has correct asymptotic size and is asymptotically similar for a suitably chosen parameter space of null distributions. It shows that the CLR tests also have these properties when the dimension p of the unknown parameter θ equals 1. When p ≥ 2, however, the asymptotic size properties are found to depend on how the conditioning statistic, upon which the CLR tests depend, is weighted. Two weighting methods have been suggested in the literature. The paper shows that the CLR tests are guaranteed to have correct asymptotic size when p ≥ 2 when the weighting is based on an estimator of the variance of the sample moments, i.e., moment-variance weighting, combined with the Robin and Smith (2000, Econometric Theory 16, 151–175) rank statistic. The paper also determines a formula for the asymptotic size of the CLR test when the weighting is based on an estimator of the variance of the sample Jacobian. However, the results of the paper do not guarantee correct asymptotic size when p ≥ 2 with the Jacobian-variance weighting, combined with the Robin and Smith (2000, Econometric Theory 16, 151–175) rank statistic, because two key sample quantities are not necessarily asymptotically independent under some identification scenarios.Analogous results for confidence sets are provided. Even for the special case of a linear instrumental variable regression model with two or more right-hand side endogenous variables, the results of the paper are new to the literature.


2016 ◽  
Vol 33 (3) ◽  
pp. 779-790 ◽  
Author(s):  
Minsoo Jeong

The residual-based bootstrap is considered one of the most reliable methods for bootstrapping generalized autoregressive conditional heteroscedasticity (GARCH) models. However, in terms of theoretical aspects, only the consistency of the bootstrap has been established, while the higher order asymptotic refinement remains unproven. For example, Corradi and Iglesias (2008) demonstrate the asymptotic refinement of the block bootstrap for GARCH models but leave the results of the residual-based bootstrap as a conjecture. To derive the second order asymptotic refinement of the residual-based GARCH bootstrap, we utilize the analysis in Andrews (2001, 2002) and establish the Edgeworth expansions of the t-statistics, as well as the convergence of their moments. As expected, we show that the bootstrap error in the coverage probabilities of the equal-tailed t-statistic and the corresponding test-inversion confidence intervals are at most of the order of O(n−1), where the exact order depends on the moment condition of the process. This convergence rate is faster than that of the block bootstrap, as well as that of the first order asymptotic test.


Sign in / Sign up

Export Citation Format

Share Document