scholarly journals Physical Separation Process for the Recycling of Critical Metals

2012 ◽  
Vol 23 (4) ◽  
pp. 311-318
Author(s):  
Tatsuya Oki
Metals ◽  
2018 ◽  
Vol 8 (11) ◽  
pp. 879
Author(s):  
Beom-Uk Kim ◽  
Chul-Hyun Park

There is increasing demand for an efficient technique for separating automobile shredder residue (ASR) obtained from end-of-life vehicles (ELVs). A particular challenge is the physical separation of conductive materials from glass. In this study, the performance of pretreatment and induction electrostatic separation process was evaluated. The results show that a sieving/washing (combination of sieving and washing) pretreatment was the most effective for removing conductive material compared to electrostatic separation alone. The optimum separation efficiency of copper products was achieved with an applied voltage of 20 kV, a relative humidity of less than 35%, and a splitter position of 8 cm. Although the separation efficiency was slightly reduced when some small glass particles remained attached to the conductive materials, the separation efficiency of copper from the pretreated ASR dramatically increased to 83.1% grade and 90.4% recovery, compared to that of raw ASR (34.3% grade and 58.6% recovery). Based on these results, it was demonstrated that the proposed sieving/washing pretreatment was proficient at removing conductive materials from glass; thus, it has the potential to significantly improve the efficiency of electrostatic separation for ASR.


2013 ◽  
Vol 111 ◽  
pp. 145-154 ◽  
Author(s):  
Vinod Kumar ◽  
Jae-chun Lee ◽  
Jinki Jeong ◽  
Manis Kumar Jha ◽  
Byung-su Kim ◽  
...  

2020 ◽  
Vol 6 (3) ◽  
pp. 25-42
Author(s):  
Nay Zaw Htay Win ◽  
◽  
Apisit Numprasanthai ◽  
Pipat Laowattanabandit ◽  
◽  
...  

2022 ◽  
pp. 103680
Author(s):  
Haiqing Li ◽  
Chairun Nasirin ◽  
Azher M. Abed ◽  
Dmitry Olegovich Bokov ◽  
Lakshmi Thangavelu ◽  
...  

2020 ◽  
pp. 0734242X2096980
Author(s):  
Zhongwei Wu ◽  
Huabing Zhu ◽  
Haijun Bi ◽  
Ping He ◽  
Song Gao

This study developed a physical separation process that recovers active cathode materials from current collectors in spent lithium-ion power batteries (LIBs). The physical separation process, implemented via thermal and mechanical treatments, was examined based on cohesive zone models (CZMs) and verified by physical separation experiments. The most efficient condition was determined by optimising the key parameters (temperature and time) of selective heating. Among several mechanical separation methods, high-speed shearing best separates positive electrode materials into active cathode materials (LiFePO4) and current collectors (Al fragments). The separation effect was verified by computing the dissociation rate and microscopic observation of the separated materials. The feasibility and efficiency of the above process were assessed in a work-of-force analysis, flow field simulation, high-speed crushing experiment and material property analysis. The above analyses realised a feasible, efficient and environmentally friendly separation route without changing the chemical structure and properties of the electrode materials. Under non-high (energy-conserving) temperature conditions, the LiFePO4 dissociation rate stabilises at 80–85%. Under high-speed crushing, the LiFePO4 dissociation rate reaches 85% at 32,000-r/min crushing and a maximum shearing velocity of the blade edge v ≈ 500 m/s. This approach can effectively recycle electrode materials, gain valuable resources and can be used to recycle and utilise spent LIBs, thus addressing two grave issues – environmental pollution and resource wastage to achieve the sustainable development of LIBs and electric vehicle industry.


2018 ◽  
Vol 54 (2A) ◽  
pp. 237
Author(s):  
Ha Vinh Hung

Physical separation process was widely applied for the separation of metallic component from Printed Circuit Boards (PCBs) due to their advantages as friendly-environment, facilitated control, and low-cost. However, the efficiency of physical separation depends on a level of the liberation between the metallic and non-metallic components which is conducted by mechanical processing.In this study, the liberation of metals from computer PCBs was conducted in detail by mechanical processes including cutting and crushing. The obtained results demonstrate the distribution metallic and non-metallic component weighs as a function of particle sizes. The separation efficiency of metals was conducted by air separation using vacuum sorter equipment. The results showed that the comminution processes using hammer mill for reach the highest efficiency with 92 % recovery and 87 % grade of metallic components in the heavy fraction with particle size 1.0 - 1.4 mm by air separation process.


Author(s):  
E. C. Buck ◽  
N. L. Dietz ◽  
J. K. Bates

Operations at former weapons processing facilities in the U. S. have resulted in a large volume of radionuclidecontaminated soils and residues. In an effort to improve remediation strategies and meet environmental regulations, radionuclide-bearing particles in contaminant soils from Fernald in Ohio and the Rocky Flats Plant (RFP) in Colorado have been characterized by electron microscopy. The object of these studies was to determine the form of the contaminant radionuclide, so that it properties could be established [1]. Physical separation and radiochemical analysis determined that uranium contamination at Fernald was not present exclusively in any one size/density fraction [2]. The uranium-contamination resulted from aqueous and solid product spills, air-borne dust particles, and from the operation of an incinerator on site. At RFP the contamination was from the incineration of Pu-bearing materials. Further analysis by x-ray absorption spectroscopy indicated that the majority of the uranium was in the 6+ oxidation state [3].


Author(s):  
V.I. Pakhomov ◽  
◽  
S.V. Braginets ◽  
O.N. Bakhchevnikov ◽  
A.I. Rukhlyada ◽  
...  

Low-traumatic technology of grain separation from an ear is developed. It consists in influence of an air jet on an ear.It leads to rolling of an ear on a surface of the threshing device concave and causes its partial abrasion which is followed by grains separation. Process of wheat ears low-traumatic threshing in the experimental device yields satisfactory results, provides reduces grain endosperm damage on 10-12% in comparison with traditional technology. Germ of grain damage decreases by 5%.Crushing of grain made no more than 0,5%. Use of the developed technology of the low-traumatic threshing will allow to reduce grain damage of cereal crops in case of the harvesting. It is important by cereal breeding.


Sign in / Sign up

Export Citation Format

Share Document