The use of amplitude ratios to constrain source mechanisms of microseismic data: A case study from the Montney Shale, Alberta

First Break ◽  
2014 ◽  
Vol 32 (7) ◽  
Author(s):  
M. Lee ◽  
T. Davis ◽  
S. Maxwell
2021 ◽  
Vol 115 ◽  
pp. 104025
Author(s):  
Yong Zhao ◽  
Tianhong Yang ◽  
Honglei Liu ◽  
Shuhong Wang ◽  
Penghai Zhang ◽  
...  

2020 ◽  
Vol 39 (3) ◽  
pp. 204-211
Author(s):  
Dmitry Alexandrov ◽  
Leo Eisner ◽  
Umair bin Waheed ◽  
SanLinn Isma'il Ebrahim Kaka ◽  
Stewart Alan Greenhalgh

Surface microseismic arrays enable long-term field-scale monitoring over multiple stimulations during the life of an unconventional field. In this study, we show highly economic methods of monitoring with sparse surface arrays in the Barnett Shale and develop an alternatative method of processing to enable good vertical and horizontal resolution of located events. We show that sparse surface monitoring arrays enable not only the detection and location of high numbers of microseismic events but also source mechanism characterization. This case study illustrates how hydraulic fracturing activated normal faulting at a distance of approximately 1 mile from stimulated wells. We show that the source mechanism enables us to resolve between newly created hydraulic fractures and activated faults. The differences in source mechanisms and b-values of newly created fractures and activated faults are consistent with independently processed temporary star-like arrays, which are also deployed over the same stimulation.


2016 ◽  
Author(s):  
Zuzana Jechumtálová ◽  
Leo Eisner ◽  
Jan Prochazka ◽  
Fangdong Chu ◽  
Jiaojun Rong

2019 ◽  
Vol 38 (8) ◽  
pp. 630-636 ◽  
Author(s):  
Jincheng Xu ◽  
Wei Zhang ◽  
Xaofei Chen ◽  
Quanshi Guo

Diffraction-stack-based algorithms are the most popular microseismic location methods for surface microseismic data. They can accommodate microseismic data with low signal-to-noise ratio by stacking a large number of traces. However, changes in waveform polarity across the receiver line due to source mechanisms may prevent stacking methods from locating the true source. Imaging functions based on simple stacks have low resolution, producing large uncertainty in the final location result. To solve these issues, we introduce a minimum semblance weighted stacking method with polarity correction, which uses an amplitude trend least-squares fitting algorithm to correct the polarity across the receiver line. We adapt the semblance weighted stacking for better coherency measure to improve the imaging resolution. Moreover, the minimum semblance is used to further improve the resolution of location results. Application to both synthetic and real data sets demonstrates good performance of our proposed location method.


Sign in / Sign up

Export Citation Format

Share Document