Physics-guided neural networks for predicting unconventional well performance — using Unconventional Rate Transient Analysis for smarter production data analytics

First Break ◽  
2019 ◽  
Vol 37 (9) ◽  
pp. 73-75
Author(s):  
A. Bachir ◽  
A. Ouenes
2021 ◽  
pp. 1-23
Author(s):  
Daniel O'Reilly ◽  
Manouchehr Haghighi ◽  
Mohammad Sayyafzadeh ◽  
Matthew Flett

Summary An approach to the analysis of production data from waterflooded oil fields is proposed in this paper. The method builds on the established techniques of rate-transient analysis (RTA) and extends the analysis period to include the transient- and steady-state effects caused by a water-injection well. This includes the initial rate transient during primary production, the depletion period of boundary-dominated flow (BDF), a transient period after injection starts and diffuses across the reservoir, and the steady-state production that follows. RTA will be applied to immiscible displacement using a graph that can be used to ascertain reservoir properties and evaluate performance aspects of the waterflood. The developed solutions can also be used for accurate and rapid forecasting of all production transience and boundary-dominated behavior at all stages of field life. Rigorous solutions are derived for the transient unit mobility displacement of a reservoir fluid, and for both constant-rate-injection and constant-pressure-injection after a period of reservoir depletion. A simple treatment of two-phase flow is given to extend this to the water/oil-displacement problem. The solutions are analytical and are validated using reservoir simulation and applied to field cases. Individual wells or total fields can be studied with this technique; several examples of both will be given. Practical cases are given for use of the new theory. The equations can be applied to production-data interpretation, production forecasting, injection-water allocation, and for the diagnosis of waterflood-performanceproblems. Correction Note: The y-axis of Fig. 8d was corrected to "Dimensionless Decline Rate Integral, qDdi". No other content was changed.


SPE Journal ◽  
2020 ◽  
Vol 25 (06) ◽  
pp. 3280-3299
Author(s):  
Hongyang Chu ◽  
Xinwei Liao ◽  
Zhiming Chen ◽  
W. John John Lee

Summary Because of readily available production data, rate-transient analysis (RTA) is an important method to predict productivity and reserves, and for reservoir and completion characterization in unconventional reservoirs. In addition, multihorizontal well pads are a common development method for unconventional reservoirs. Close well spacing between multifractured horizontal wells (MFHWs) in the multiwell pads makes interference from adjacent MFHWs especially significant. For RTA of production data from multihorizontal well pads, the influence of adjacent MFHWs cannot be ignored. In this work, we propose a semianalytic RTA model for the multihorizontal well pad with arbitrary multiple MFHW properties and starting-production times. Combining Laplace transformation and finite-difference analysis, we obtained a general solution of a multiwell mathematical model to use in RTA. Our model is applicable to cases of multiple MFHWs with different bottomhole pressures (BHPs), varying hydraulic-fracture properties, and different starting-production times. In the solutions, we observe bilinear flow, linear flow, transition flow, and multi-MFHW flow. Rate-normalized pressure (RNP) and its derivative are also affected by multi-MFHW flow. Two case studies revealed that the negative effect of interwell interference on the parent-well productivity is closely related to the pressure distribution caused by the production of child wells.


2014 ◽  
Vol 17 (02) ◽  
pp. 209-219 ◽  
Author(s):  
H.. Luo ◽  
G.F.. F. Mahiya ◽  
S.. Pannett ◽  
P.. Benham

Summary The evaluation of expected ultimate recovery (EUR) for tight gas wells has generally relied upon the Arps equation for decline-curve analysis (DCA) as a popular approach. However, it is typical in tight gas reservoirs to have limited production history that has yet to reach boundary-dominated flow because of the low permeability of such systems. Commingled production makes the situation even more complicated with multiboundary behavior. When suitable analogs are not available, rate-transient analysis (RTA) can play an important role to justify DCA assumptions for production forecasting. The Deep-basin East field has been developed with hydraulically fractured vertical wells through commingled production from multiple formations since 2002. To evaluate potential of this field, DCA type curves for various areas were established according to well performance and geological trending. Multiple-segment DCA methodology demonstrated reasonable forecasts, in which one Arps equation is used to describe the rapidly decreasing transient period in early time and another equation is used for boundary-dominated flow. However, a limitation of this approach is the uncertainty of the forecast in the absence of extended production data because the EUR can be sensitive to adjustments in some assumed DCA parameters of the second segment. In this paper, we used RTA to assess reservoir and fracture properties in multiple layers and built RTA-type well models around which uncertainty analyses were performed. The distributions of the model properties were then used in Monte Carlo analysis to forecast production and define uncertainty ranges for EUR and DCA parameters. The resulting forecasts and EUR distribution from RTA modeling generally support the DCA assumptions used for the type curves for corresponding areas of the field. The study also showed how the contribution from the various commingled layers changes with time. The proposed workflow provides a fit-for-purpose way to quantify uncertainties in tight gas production forecasting, especially for cases when production history is limited and field-level numerical simulation is not practicable.


SPE Journal ◽  
2013 ◽  
Vol 18 (04) ◽  
pp. 795-812 ◽  
Author(s):  
C.R.. R. Clarkson ◽  
J.D.. D. Williams-Kovacs

Summary Early fluid production and flowing pressure data gathered immediately after fracture stimulation of multifractured horizontal wells may provide an early opportunity to generate long-term forecasts in shale-gas (and other hydraulically fractured) reservoirs. These early data, which often consist of hourly (if not more frequent) monitoring of fracture/formation fluid rates, volumes, and flowing pressures, are gathered on nearly every well that is completed. Additionally, fluid compositions may be monitored to determine the extent of load fluid recovery, and chemical tracers added during stage treatments to evaluate inflow from each of the stages. There is currently debate within the industry of the usefulness of these data for determining the long-term production performance of the wells. “Rules of thumb” derived from the percentage of load-fluid recovery are often used by the industry to provide a directional indication of well performance. More-quantitative analysis of the data is rarely performed; it is likely that the multiphase-flow nature of flowback and the possibility of early data being dominated by wellbore-storage effects have deterred many analysts. In this work, the use of short-term flowback data for quantitative analysis of induced-hydraulic-fracture properties is critically evaluated. For the first time, a method for analyzing water and gas production and flowing pressures associated with the flowback of shale-gas wells, to obtain hydraulic-fracture properties, is presented. Previous attempts have focused on single-phase analysis. Examples from the Marcellus shale are analyzed. The short (less than 48 hours) flowback periods were followed by long-term pressure buildups (approximately 1 month). Gas + water production data were analyzed with analytical simulation and rate-transient analysis methods designed for analyzing multiphase coalbed-methane (CBM) data. This analogy is used because two-phase flowback is assumed to be similar to simultaneous flow of gas and water during long-term production through the fracture system of coal. One interpretation is that the early flowback data correspond to wellbore + fracture volume depletion (storage). It is assumed that fracture-storage volume is much greater than wellbore storage. This flow regime appears consistent with what is interpreted from the long-term pressure-buildup data, and from the rate-transient analysis of flowback data. Assuming further that the complex fracture network created during stimulation is confined to a region around perforation clusters in each stage, one can see that fluid-production data can be analyzed with a two-phase tank-model simulator to determine fracture permeability and drainage area, the latter being interpreted to obtain an effective (producing) fracture half-length given geometrical considerations. Total fracture half-length, derived from rate-transient analysis of online (post-cleanup) data, verifies the flowback estimates. An analytical forecasting tool that accounts for multiple sequences of post-storage linear flow, followed by late-stage boundary flow, was developed to forecast production with flowback-derived parameters, volumetric inputs, matrix permeability, completion data, and operating constraints. The preliminary forecasts are in very good agreement with online production data after several months of production. The use of flowback data to generate early production forecasts is therefore encouraging, but needs to be tested for a greater data set for this shale play and for other plays, and should not be used for reserves forecasting.


2021 ◽  
Author(s):  
Michael B. Vasquez ◽  
Pedro M. Adrian

Abstract Analysis of modern production data also known as Rate Transient Analysis (RTA) is a technique to perform reservoir characterization using the combination of bottomhole flowing pressure and flow rate data without the need to close wells. These methods allow the estimation of the Hydrocarbon Initially In-Place (HIIP), production forecast and main reservoir parameters. Several RTA methods have already been developed to analyze different reservoir models such as homogeneous, naturally fractured, geopressurized, hydraulically fractured, however, in the case of layered reservoirs the studies are almost null although there are several studies conducted in the area of pressure transient analysis. This paper presents the analytical derivation of the Palacio-Blasingame type curves to analyze production data of a two-layered reservoir model without crossflow or hydraulic communication between them. A new set of type curves were generated by applying the Gaver Stehfest algorithm with Matlab to achieve the solution of the inverse of the Laplace space considering a constant flow of production flow and a flow regime in the radial pseudosteady-state, then applying the definitions dimensionless the proposed method was derived. Synthetic data were generated with a commercial simulator to validate the method. Furthermore this paper presents a field case study application. The results were compared to the type curve for homogenous reservoirs, volumetric method as well as well testing results. Results confirmed the applicability of rate transient analysis technique in a two-layered reservoir without crossflow with a single drainage area and the same initial pressure for all layers (same pressure gradient of formation), and different values of thickness of the layers, permeability and porosity.


Energies ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 4887
Author(s):  
Suyang Zhu ◽  
Alireza Salmachi

Two phase flow and horizontal well completion pose additional challenges for rate-transient analysis (RTA) techniques in under-saturated coal seam gas (CSG) reservoirs. To better obtain reservoir parameters, a practical workflow for the two phase RTA technique is presented to extract reservoir information by the analysis of production data of a horizontal well in an under-saturated CSG reservoir. This workflow includes a flowing material balance (FMB) technique and an improved form of two phase (water + gas) RTA. At production stage of a horizontal well in under-saturated CSG reservoirs, a FMB technique was developed to extract original water in-place (OWIP) and horizontal permeability. This FMB technique involves the application of an appropriate productivity equation representing the relative position of the horizontal well in the drainage area. Then, two phase (water + gas) RTA of a horizontal well was also investigated by introducing the concept of the area of influence (AI), which enables the calculation of the water saturation during the transient formation linear flow. Finally, simulation and field examples are presented to validate and demonstrate the application of the proposed techniques. Simulation results indicate that the proposed FMB technique accurately predicts OWIP and coal permeability when an appropriate productivity equation is selected. The field application of the proposed methods is demonstrated by analysis of production data of a horizontal CSG well in the Qinshui Basin, China.


SPE Journal ◽  
2018 ◽  
Vol 23 (04) ◽  
pp. 1145-1165 ◽  
Author(s):  
H.. Behmanesh ◽  
L.. Mattar ◽  
J. M. Thompson ◽  
D. M. Anderson ◽  
D. W. Nakaska ◽  
...  

Summary Significant advances have been made in the development of analytical models for performing rate-transient analysis (RTA) for single-phase oil and gas reservoirs. The primary complication associated with the adaptation of these solutions to wells exhibiting multiphase flow is the single-phase assumption in the development of the material-balance time function. Despite some efforts in modifying existing dry-gas formulations for use with gas/condensate reservoirs, that approach is not practical for analyzing multiphase flow from oil wells with multiphase-flow characteristics. In this work, we present a simple yet semianalytical model that provides a solution for analyzing production data from wells exhibiting multiphase flow during boundary-dominated flow periods. The solution is obtained by combining the material-balance equation and the productivity index (PI) for all flowing phases. Appropriately defined total pseudopressure and total pseudotime are introduced to handle the associated multiphase nonlinearities in the governing flow equations of oil, gas, and water phases simultaneously. A generalized flowing-material-balance (FMB) equation is derived from the total pseudovariables to estimate original fluid in place and drainage area (given volumetric input). The presented model provides a theoretical framework for analyzing production data considering a wide variety of reservoir-fluid systems. The new method is validated against numerical simulation, covering a wide range of fluid properties and operating conditions. In all simulated cases, the new method matches simulation input acceptably. Two field examples are also analyzed to demonstrate the practical applicability of this approach. This work serves as a practical and simple engineering tool for production-data analysis on wells exhibiting single and multiphase flow during boundary-dominated flow.


Sign in / Sign up

Export Citation Format

Share Document