Passive Electrical Monitoring Of Aerobic And Anaerobic Processes Using Septic Systems As An Analog

Author(s):  
Jeffrey G. Paine
2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Zala Schmautz ◽  
Carlos A. Espinal ◽  
Andrea M. Bohny ◽  
Fabio Rezzonico ◽  
Ranka Junge ◽  
...  

Abstract Background An aquaponic system couples cultivation of plants and fish in the same aqueous medium. The system consists of interconnected compartments for fish rearing and plant production, as well as for water filtration, with all compartments hosting diverse microbial communities, which interact within the system. Due to the design, function and operation mode of the individual compartments, each of them exhibits unique biotic and abiotic conditions. Elucidating how these conditions shape microbial communities is useful in understanding how these compartments may affect the quality of the water, in which plants and fish are cultured. Results We investigated the possible relationships between microbial communities from biofilms and water quality parameters in different compartments of the aquaponic system. Biofilm samples were analyzed by total community profiling for bacterial and archaeal communities. The results implied that the oxygen levels could largely explain the main differences in abiotic parameters and microbial communities in each compartment of the system. Aerobic system compartments are highly biodiverse and work mostly as a nitrifying biofilter, whereas biofilms in the anaerobic compartments contain a less diverse community. Finally, the part of the system connecting the aerobic and anaerobic processes showed common conditions where both aerobic and anaerobic processes were observed. Conclusion Different predicted microbial activities for each compartment were found to be supported by the abiotic parameters, of which the oxygen saturation, total organic carbon and total nitrogen differentiated clearly between samples from the main aerobic loop and the anaerobic compartments. The latter was also confirmed using microbial community profile analysis.


Biochemistry ◽  
1967 ◽  
Vol 6 (9) ◽  
pp. 2673-2678 ◽  
Author(s):  
W. L. Miller ◽  
M. E. Kalafer ◽  
J. L. Gaylor ◽  
C. V. Delwiche

2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Steven Smriga ◽  
Davide Ciccarese ◽  
Andrew R. Babbin

AbstractHeterotrophic denitrification enables facultative anaerobes to continue growing even when limited by oxygen (O2) availability. Particles in particular provide physical matrices characterized by reduced O2 permeability even in well-oxygenated bulk conditions, creating microenvironments where microbial denitrifiers may proliferate. Whereas numerical particle models generally describe denitrification as a function of radius, here we provide evidence for heterogeneity of intraparticle denitrification activity due to local interactions within and among microcolonies. Pseudomonas aeruginosa cells and microcolonies act to metabolically shade each other, fostering anaerobic processes just microns from O2-saturated bulk water. Even within well-oxygenated fluid, suboxia and denitrification reproducibly developed and migrated along sharp 10 to 100 µm gradients, driven by the balance of oxidant diffusion and local respiration. Moreover, metabolic differentiation among densely packed cells is dictated by the diffusional supply of O2, leading to distinct bimodality in the distribution of nitrate and nitrite reductase expression. The initial seeding density controls the speed at which anoxia develops, and even particles seeded with few bacteria remain capable of becoming anoxic. Our empirical results capture the dynamics of denitrifier gene expression in direct association with O2 concentrations over microscale physical matrices, providing observations of the co-occurrence and spatial arrangement of aerobic and anaerobic processes.


1994 ◽  
Vol 29 (4) ◽  
pp. 249-256 ◽  
Author(s):  
P. Eger

When designing wetland treatment systems for trace metal removal, both aerobic and anaerobic processes can be incorporated into the final design. Aerobic processes such as adsorption and ion exchange can successfully treat neutral drainage in overland flow systems. Acid drainage can be treated in anaerobic systems as a result of sulfate reduction processes which neutralize pH and precipitate metals. Test work on both aerobic and anaerobic systems has been conducted in Minnesota. For the past three years, overland flow test systems have successfully removed copper, cobalt, nickel and zinc from neutral mine drainage. Nickel, which is the major contaminant, has been reduced around 90 percent from 2 mg/L to 0.2 mg/L. A sulfate reduction system has successfully treated acid mine drainage for two years, increasing pH from 5 to over 7 and reducing concentrations of all metals by over 90 percent. Important factors to consider when designing wetlands to remove trace metals include not only the type of wetland required but also the size of the system and the residence time needed to achieve the water quality standards.


Sign in / Sign up

Export Citation Format

Share Document