scholarly journals Environmental parameters and microbial community profiles as indication towards microbial activities and diversity in aquaponic system compartments

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Zala Schmautz ◽  
Carlos A. Espinal ◽  
Andrea M. Bohny ◽  
Fabio Rezzonico ◽  
Ranka Junge ◽  
...  

Abstract Background An aquaponic system couples cultivation of plants and fish in the same aqueous medium. The system consists of interconnected compartments for fish rearing and plant production, as well as for water filtration, with all compartments hosting diverse microbial communities, which interact within the system. Due to the design, function and operation mode of the individual compartments, each of them exhibits unique biotic and abiotic conditions. Elucidating how these conditions shape microbial communities is useful in understanding how these compartments may affect the quality of the water, in which plants and fish are cultured. Results We investigated the possible relationships between microbial communities from biofilms and water quality parameters in different compartments of the aquaponic system. Biofilm samples were analyzed by total community profiling for bacterial and archaeal communities. The results implied that the oxygen levels could largely explain the main differences in abiotic parameters and microbial communities in each compartment of the system. Aerobic system compartments are highly biodiverse and work mostly as a nitrifying biofilter, whereas biofilms in the anaerobic compartments contain a less diverse community. Finally, the part of the system connecting the aerobic and anaerobic processes showed common conditions where both aerobic and anaerobic processes were observed. Conclusion Different predicted microbial activities for each compartment were found to be supported by the abiotic parameters, of which the oxygen saturation, total organic carbon and total nitrogen differentiated clearly between samples from the main aerobic loop and the anaerobic compartments. The latter was also confirmed using microbial community profile analysis.

2007 ◽  
Vol 3 (5) ◽  
pp. 487-490 ◽  
Author(s):  
Richard D Bardgett ◽  
Andreas Richter ◽  
Roland Bol ◽  
Mark H Garnett ◽  
Rupert Bäumler ◽  
...  

When glaciers retreat they expose barren substrates that become colonized by organisms, beginning the process of primary succession. Recent studies reveal that heterotrophic microbial communities occur in newly exposed glacial substrates before autotrophic succession begins. This raises questions about how heterotrophic microbial communities function in the absence of carbon inputs from autotrophs. We measured patterns of soil organic matter development and changes in microbial community composition and carbon use along a 150-year chronosequence of a retreating glacier in the Austrian Alps. We found that soil microbial communities of recently deglaciated terrain differed markedly from those of later successional stages, being of lower biomass and higher abundance of bacteria relative to fungi. Moreover, we found that these initial microbial communities used ancient and recalcitrant carbon as an energy source, along with modern carbon. Only after more than 50 years of organic matter accumulation did the soil microbial community change to one supported primarily by modern carbon, most likely from recent plant production. Our findings suggest the existence of an initial stage of heterotrophic microbial community development that precedes autotrophic community assembly and is sustained, in part, by ancient carbon.


2019 ◽  
Author(s):  
Bettina Glasl ◽  
David G. Bourne ◽  
Pedro R. Frade ◽  
Torsten Thomas ◽  
Britta Schaffelke ◽  
...  

AbstractIncorporation of microbial community data into environmental monitoring programs could improve prediction and management of environmental pressures. Coral reefs have experienced dramatic declines due to cumulative impacts of local and global stressors. Here we assess the utility of free-living (i.e. seawater and sediment) and host-associated (i.e. corals, sponges and macroalgae) microbiomes for diagnosing environmental perturbation based on their habitat-specificity, environmental sensitivity and uniformity. We show that the seawater microbiome has the greatest diagnostic value, with environmental parameters explaining 56% of the observed compositional variation and temporal successions being dominated by uniform community assembly patterns. Host-associated microbiomes, in contrast, were five-times less affected by the environment and their community assembly patterns were generally less uniform. Further, seawater microbial community data provided an accurate prediction on the environmental state, highlighting the diagnostic value of microorganisms and illustrating how long-term coral reef monitoring initiatives could be enhanced by incorporating assessments of microbial communities in seawater.ImportanceThe recent success in disease diagnostics based on the human microbiome has highlighted the utility of this approach for model systems. However, despite improved prediction and management of environmental pressures from the inclusion of microbial community data in monitoring programs, this approach has not previously been applied to coral reef ecosystems. Coral reefs are facing unprecedented pressure on a local and global scale, and sensitive and rapid markers for ecosystem stress are urgently needed to underpin effective management and restoration strategies. In this study, we performed the first assessment of the diagnostic value of multiple free-living and host-associated reef microbiomes to infer the environmental state of coral reef ecosystems. Our results reveal that free-living microbial communities have a higher potential to infer environmental parameters than host-associated microbial communities due to their higher determinacy and environmental sensitivity. We therefore recommend timely integration of microbial sampling into current coral reef monitoring initiatives.


2020 ◽  
Vol 48 (2) ◽  
pp. 399-409
Author(s):  
Baizhen Gao ◽  
Rushant Sabnis ◽  
Tommaso Costantini ◽  
Robert Jinkerson ◽  
Qing Sun

Microbial communities drive diverse processes that impact nearly everything on this planet, from global biogeochemical cycles to human health. Harnessing the power of these microorganisms could provide solutions to many of the challenges that face society. However, naturally occurring microbial communities are not optimized for anthropogenic use. An emerging area of research is focusing on engineering synthetic microbial communities to carry out predefined functions. Microbial community engineers are applying design principles like top-down and bottom-up approaches to create synthetic microbial communities having a myriad of real-life applications in health care, disease prevention, and environmental remediation. Multiple genetic engineering tools and delivery approaches can be used to ‘knock-in' new gene functions into microbial communities. A systematic study of the microbial interactions, community assembling principles, and engineering tools are necessary for us to understand the microbial community and to better utilize them. Continued analysis and effort are required to further the current and potential applications of synthetic microbial communities.


2021 ◽  
Vol 9 (4) ◽  
pp. 816
Author(s):  
Matthew G. Links ◽  
Tim J. Dumonceaux ◽  
E. Luke McCarthy ◽  
Sean M. Hemmingsen ◽  
Edward Topp ◽  
...  

Background. The molecular profiling of complex microbial communities has become the basis for examining the relationship between the microbiome composition, structure and metabolic functions of those communities. Microbial community structure can be partially assessed with “universal” PCR targeting taxonomic or functional gene markers. Increasingly, shotgun metagenomic DNA sequencing is providing more quantitative insight into microbiomes. However, both amplicon-based and shotgun sequencing approaches have shortcomings that limit the ability to study microbiome dynamics. Methods. We present a novel, amplicon-free, hybridization-based method (CaptureSeq) for profiling complex microbial communities using probes based on the chaperonin-60 gene. Molecular profiles of a commercially available synthetic microbial community standard were compared using CaptureSeq, whole metagenome sequencing, and 16S universal target amplification. Profiles were also generated for natural ecosystems including antibiotic-amended soils, manure storage tanks, and an agricultural reservoir. Results. The CaptureSeq method generated a microbial profile that encompassed all of the bacteria and eukaryotes in the panel with greater reproducibility and more accurate representation of high G/C content microorganisms compared to 16S amplification. In the natural ecosystems, CaptureSeq provided a much greater depth of coverage and sensitivity of detection compared to shotgun sequencing without prior selection. The resulting community profiles provided quantitatively reliable information about all three domains of life (Bacteria, Archaea, and Eukarya) in the different ecosystems. The applications of CaptureSeq will facilitate accurate studies of host-microbiome interactions for environmental, crop, animal and human health. Conclusions: cpn60-based hybridization enriched for taxonomically informative DNA sequences from complex mixtures. In synthetic and natural microbial ecosystems, CaptureSeq provided sequences from prokaryotes and eukaryotes simultaneously, with quantitatively reliable read abundances. CaptureSeq provides an alternative to PCR amplification of taxonomic markers with deep community coverage while minimizing amplification biases.


2021 ◽  
Vol 13 (13) ◽  
pp. 7358
Author(s):  
Dong-Hyun Kim ◽  
Hyun-Sik Yun ◽  
Young-Saeng Kim ◽  
Jong-Guk Kim

This study analyzed the microbial community metagenomically to determine the cause of the functionality of a livestock wastewater treatment facility that can effectively remove pollutants, such as ammonia and hydrogen sulfide. Illumina MiSeq sequencing was used in analyzing the composition and structure of the microbial community, and the 16S rRNA gene was used. Through Illumina MiSeq sequencing, information such as diversity indicators as well as the composition and structure of microbial communities present in the livestock wastewater treatment facility were obtained, and differences between microbial communities present in the investigated samples were compared. The number of reads, operational taxonomic units, and species richness were lower in influent sample (NLF), where the wastewater enters, than in effluent sample (NL), in which treated wastewater is found. This difference was greater in June 2019 than in January 2020, and the removal rates of ammonia (86.93%) and hydrogen sulfide (99.72%) were also higher in June 2019. In both areas, the community composition was similar in January 2020, whereas the influent sample (NLF) and effluent sample (NL) areas in June 2019 were dominated by Proteobacteria (76.23%) and Firmicutes (67.13%), respectively. Oleiphilaceae (40.89%) and Thioalkalibacteraceae (12.91%), which are related to ammonia and hydrogen sulfide removal, respectively, were identified in influent sample (NLF) in June 2019. They were more abundant in June 2019 than in January 2020. Therefore, the functionality of the livestock wastewater treatment facility was affected by characteristics, including the composition of the microbial community. Compared to Illumina MiSeq sequencing, fewer species were isolated and identified in both areas using culture-based methods, suggesting Illumina MiSeq sequencing as a powerful tool to determine the relevance of microbial communities for pollutant removal.


Agronomy ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 173
Author(s):  
Huiling Guan ◽  
Jiangwen Fan ◽  
Haiyan Zhang ◽  
Warwick Harris

Soil erosion is prevalent in karst areas, but few studies have compared the differences in the drivers for soil microbial communities among karst ecosystems with different soil depths, and most studies have focused on the local scale. To fill this research gap, we investigated the upper 20 cm soil layers of 10 shallow–soil depth (shallow–SDC, total soil depth less than 100 cm) and 11 deep–soil depth communities (deep–SDC, total soil depth more than 100 cm), covering a broad range of vegetation types, soils, and climates. The microbial community characteristics of both the shallow–SDC and deep–SDC soils were tested by phospholipid fatty acid (PLFAs) analysis, and the key drivers of the microbial communities were illustrated by forward selection and variance partitioning analysis. Our findings demonstrated that more abundant soil nutrients supported higher fungal PLFA in shallow–SDC than in deep–SDC (p < 0.05). Furthermore, stronger correlation between the microbial community and the plant–soil system was found in shallow–SDC: the pure plant effect explained the 43.2% of variance in microbial biomass and 57.8% of the variance in the ratio of Gram–positive bacteria to Gram–negative bacteria (G+/G−), and the ratio of fungi to total bacteria (F/B); the pure soil effect accounted for 68.6% variance in the microbial diversity. The ratio of microbial PLFA cyclopropyl to precursors (Cy/Pr) and the ratio of saturated PLFA to monounsaturated PLFA (S/M) as indicators of microbial stress were controlled by pH, but high pH was not conducive to microorganisms in this area. Meanwhile, Cy/Pr in all communities was >0.1, indicating that microorganisms were under environmental stress. Therefore, the further ecological restoration of degraded karst communities is needed to improve their microbial communities.


2020 ◽  
Vol 8 (11) ◽  
pp. 1657
Author(s):  
Abdul-Salam Juhmani ◽  
Alessandro Vezzi ◽  
Mohammad Wahsha ◽  
Alessandro Buosi ◽  
Fabio De Pascale ◽  
...  

Seaweeds are a group of essential photosynthetic organisms that harbor a rich diversity of associated microbial communities with substantial functions related to host health and defense. Environmental and anthropogenic stressors may disrupt the microbial communities and their metabolic activity, leading to host physiological alterations that negatively affect seaweeds’ performance and survival. Here, the bacterial communities associated with one of the most common seaweed, Ulva laetevirens Areshough, were sampled over a year at three sites of the lagoon of Venice affected by different environmental and anthropogenic stressors. Bacterial communities were characterized through Illumina sequencing of the V4 hypervariable region of 16S rRNA genes. The study demonstrated that the seaweed associated bacterial communities at sites impacted by environmental stressors were host-specific and differed significantly from the less affected site. Furthermore, these communities were significantly distinct from those of the surrounding seawater. The bacterial communities’ composition was significantly correlated with environmental parameters (nutrient concentrations, dissolved oxygen saturation, and pH) across sites. This study showed that several more abundant bacteria on U. laetevirens at stressed sites belonged to taxa related to the host response to the stressors. Overall, environmental parameters and anthropogenic stressors were shown to substantially affect seaweed associated bacterial communities, which reflect the host response to environmental variations.


Animals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 865
Author(s):  
Lantian Su ◽  
Xinxin Liu ◽  
Guangyao Jin ◽  
Yue Ma ◽  
Haoxin Tan ◽  
...  

In recent decades, wild sable (Carnivora Mustelidae Martes zibellina) habitats, which are often natural forests, have been squeezed by anthropogenic disturbances such as clear-cutting, tilling and grazing. Sables tend to live in sloped areas with relatively harsh conditions. Here, we determine effects of environmental factors on wild sable gut microbial communities between high and low altitude habitats using Illumina Miseq sequencing of bacterial 16S rRNA genes. Our results showed that despite wild sable gut microbial community diversity being resilient to many environmental factors, community composition was sensitive to altitude. Wild sable gut microbial communities were dominated by Firmicutes (relative abundance 38.23%), followed by Actinobacteria (30.29%), and Proteobacteria (28.15%). Altitude was negatively correlated with the abundance of Firmicutes, suggesting sable likely consume more vegetarian food in lower habitats where plant diversity, temperature and vegetation coverage were greater. In addition, our functional genes prediction and qPCR results demonstrated that energy/fat processing microorganisms and functional genes are enriched with increasing altitude, which likely enhanced metabolic functions and supported wild sables to survive in elevated habitats. Overall, our results improve the knowledge of the ecological impact of habitat change, providing insights into wild animal protection at the mountain area with hash climate conditions.


Data ◽  
2021 ◽  
Vol 6 (5) ◽  
pp. 44
Author(s):  
Jae-Hyun Lim ◽  
Il-Nam Kim

Marine bacteria are known to play significant roles in marine biogeochemical cycles regarding the decomposition of organic matter. Despite the increasing attention paid to the study of marine bacteria, research has been too limited to fully elucidate the complex interaction between marine bacterial communities and environmental variables. Jinhae Bay, the study area in this work, is the most anthropogenically eutrophied coastal bay in South Korea, and while its physical and biogeochemical characteristics are well described, less is known about the associated changes in microbial communities. In the present study, we reconstructed a metagenomics data based on the 16S rRNA gene to investigate temporal and vertical changes in microbial communities at three depths (surface, middle, and bottom) during a seven-month period from June to December 2016 at one sampling site (J1) in Jinhae Bay. Of all the bacterial data, Proteobacteria, Bacteroidetes, and Cyanobacteria were predominant from June to November, whereas Firmicutes were predominant in December, especially at the middle and bottom depths. These results show that the composition of the microbial community is strongly associated with temporal changes. Furthermore, the community compositions were markedly different between the surface, middle, and bottom depths in summer, when water column stratification and bottom water hypoxia (low dissolved oxygen level) were strongly developed. Metagenomics data contribute to improving our understanding of important relationships between environmental characteristics and microbial community change in eutrophication-induced and deoxygenated coastal areas.


2013 ◽  
Vol 80 (1) ◽  
pp. 177-183 ◽  
Author(s):  
Lavane Kim ◽  
Eulyn Pagaling ◽  
Yi Y. Zuo ◽  
Tao Yan

ABSTRACTThe impact of substratum surface property change on biofilm community structure was investigated using laboratory biological aerated filter (BAF) reactors and molecular microbial community analysis. Two substratum surfaces that differed in surface properties were created via surface coating and used to develop biofilms in test (modified surface) and control (original surface) BAF reactors. Microbial community analysis by 16S rRNA gene-based PCR-denaturing gradient gel electrophoresis (DGGE) showed that the surface property change consistently resulted in distinct profiles of microbial populations during replicate reactor start-ups. Pyrosequencing of the bar-coded 16S rRNA gene amplicons surveyed more than 90% of the microbial diversity in the microbial communities and identified 72 unique bacterial species within 19 bacterial orders. Among the 19 orders of bacteria detected,BurkholderialesandRhodocyclalesof theBetaproteobacteriaclass were numerically dominant and accounted for 90.5 to 97.4% of the sequence reads, and their relative abundances in the test and control BAF reactors were different in consistent patterns during the two reactor start-ups. Three of the five dominant bacterial species also showed consistent relative abundance changes between the test and control BAF reactors. The different biofilm microbial communities led to different treatment efficiencies, with consistently higher total organic carbon (TOC) removal in the test reactor than in the control reactor. Further understanding of how surface properties affect biofilm microbial communities and functional performance would enable the rational design of new generations of substrata for the improvement of biofilm-based biological treatment processes.


Sign in / Sign up

Export Citation Format

Share Document