Data Interpretation In The System Of Environmental Monitoring Of The Shelf Oil And Gas Complex

Author(s):  
S.L. Dzhenyuk
2018 ◽  
Author(s):  
Rais Khisamov ◽  
Natalya Skibitskaya ◽  
Kazimir Kovalenko ◽  
Venera Bazarevskaya ◽  
Nikita Samokhvalov ◽  
...  

2017 ◽  
Vol 13 (4) ◽  
pp. 797-799
Author(s):  
Delina Lyon ◽  
Koen Bröker ◽  
Ray Valente ◽  
Nicolas Tsesmetzis

2021 ◽  
Vol 11 (4) ◽  
pp. 1545-1558
Author(s):  
E. M Okoro ◽  
K. M Onuoha ◽  
C. G Okeugo ◽  
C. I. P. Dim

AbstractThe renewed quest to boost Nigeria’s dwindling reserves through aggressive search for oil and gas deposits in Cretaceous sedimentary basins has re-ignited the need to re-evaluate the hydrocarbon potentials of the Dahomey Basin. Aeromagnetic data are a low-cost geophysical tool deployed in mapping regional basement structures and determination of basement depths and sedimentary thickness in frontier basin exploration. In this study, high-resolution aeromagnetic (HRAM) data covering the Dahomey Basin Nigeria have been interpreted to map the basement structural configuration and to identify mini-basins favorable for hydrocarbon prospectivity. The total magnetic intensity grid was reduced to the equator (RTE) and edge detection filters including first vertical derivative (FVD), total horizontal derivative (THDR), tilt derivative (TDR) and total horizontal derivative of upward continuation (THDR_UC)) were applied to the RTE grid to locate the edges and contacts of geological structures in the basin. Depth to magnetic sources were estimated using the source parameter imaging (SPI) method. Data interpretation results revealed shallow and deep-seated linear features trending in the NNE-SSW, NE-SW, NW-SE and WNW-ESE directions. The SPI map showed a rugged basement topography which depicted a horst-graben architecture on 2D forward models along some selected profiles. Two mini-basins ranging in basement depths between 4.5 – 6.3km were mapped offshore of the study area. It appears the offshore Dahomey Basin holds greater promises for hydrocarbon occurrence due to the presence of thicker succession of sedimentary deposits in the identified mini-basins.


Author(s):  
A. E. Cherepovitsyn ◽  
◽  
D. M. Metkin ◽  

The Arctic zone of the Russian Federation (AZRF) is characterized by the fragility of the ecosystem, the slightest violation of which can lead to catastrophic negative consequences on a global scale. Due to the availability of production facilities of various scales and environmental safety classes within the territorial and aquatic Arctic, the risk of negative impact on the environment is very significant. In order to prevent possible environmental damage within the AZRF, it is advisable to carry out activities related to the implementation of continuous monitoring of the environment aimed at detecting sources that pose a potential threat to the ecosystem. Taking into account the harsh Arctic climate, the lack of the possibility of year-round land access to industrial facilities located in the Russian Arctic, the scale and peculiarities of the implementation of Arctic offshore projects for the extraction and processing of hydrocarbons, the length and congestion of the used logistic artery - the Northern Sea Route, the choice of means, which are used for monitoring the ecological situation is justified by their mobility and efficiency. In particular, such means include technologies that allow remote monitoring of the environmental situation of industrial facilities. The article outlines the role of remote methods of environmental monitoring and control in the system of environmental protection measures of the Russian Arctic, presents methods for assessing the impact of industrial facilities of the oil and gas complex (OGC) on the environment of the Russian Arctic, presents the results of assessing the effectiveness of using remote methods of environmental monitoring of industrial facilities for the production and processing of hydrocarbons (HC) in the AZRF. The scientific novelty of the study lies in the substantiation of the ecological and economic feasibility of using the methods of remote monitoring of the ecological situation in the Arctic.


2021 ◽  
Author(s):  
Alexander Vadimovich Akinshin ◽  
Mikhail Vladimirovich Dmitrievskiy ◽  
Yuliy Dmitrievich Kantemirov ◽  
Kirill Dmitrievich Bobylev

Abstract Nowadays, digitalization and automation are a common trend for many companies of various areas including the oil and gas production industry. Processes of initial data preliminary analysis (unification, merging, depth shifting) and petrophysical preparation for calculations (lithology differentiation, averaging, measurements calculation etc.) in the framework of geophysical well logging (GWL) data interpretation take a significant amount of time. Incorporation of automation algorithms tuned for specific sediments enables to considerably reduce labour effort what increases the time needed for the analytical part of the interpretation. The developed approach is an integrated algorithm which helps to perform preliminary preparation and interpretation of GWL data in the framework of integrated adjustable process with minimum participation of the interpreter in routine operations. The features of the virtual assistant are coded in Python.


Sign in / Sign up

Export Citation Format

Share Document