The Impact of Reservoir Conditions on the Measurement of Multiphase Flow Properties for CO2-brine Systems

Author(s):  
B. Niu ◽  
S. Krevor
2016 ◽  
Author(s):  
Juan D. Escobar Gómez ◽  
Carlos Torres-Verdín ◽  
Mark A. Proett ◽  
Shouxiang Ma

2019 ◽  
Vol 131 (2) ◽  
pp. 363-380 ◽  
Author(s):  
Ben Niu ◽  
Samuel Krevor

AbstractCarbon dioxide injection into deep saline aquifers is governed by a number of physico-chemical processes including mineral dissolution and precipitation, multiphase fluid flow, and capillary trapping. These processes can be coupled; however, the impact of fluid–rock reaction on the multiphase flow properties is difficult to study and is not simply correlated with variations in porosity. We observed the impact of rock mineral dissolution on multiphase flow properties in two carbonate rocks with distinct pore structures. Observations of steady-state $$\hbox {N}_2$$N2–water relative permeability and residual trapping were obtained, along with mercury injection capillary pressure characteristics. These tests alternated with eight stages in which 0.5% of the mineral volume was uniformly dissolved into solution from the rock cores using an aqueous solution with a temperature-controlled acid. Variations in the multiphase flow properties did not relate simply to changes in porosity, but corresponded to the changes in the underlying pore structure. In the Ketton carbonate, dissolution resulted in an increase in the fraction of pore volume made up by the smallest pores and a decrease in the fraction made up by the largest pores. This resulted in an increase in the relative permeability to the nonwetting phase, a decrease in the relative permeability to the wetting phase, and a modest, but systematic decrease in residual trapping. In the Estaillades carbonate, dissolution resulted in an increase in the fraction of pore volume made up by pores in the central range of the initial pore size distribution, and a corresponding decrease in the fraction made up by both the smallest and largest pores. This resulted in a decrease in the relative permeability to both the wetting and nonwetting fluid phases and no discernible impact on the residual trapping. In summary, the impact of rock matrix dissolution will be strongly dependent on the impact of that dissolution on the underlying pore structure of the rock. However, if the variation in pore structure can be observed or estimated with modelling, then it should be possible to estimate the impacts on multiphase flow properties.


2020 ◽  
Vol 117 (6) ◽  
pp. 619
Author(s):  
Rui Xu ◽  
Haitao Ling ◽  
Haijun Wang ◽  
Lizhong Chang ◽  
Shengtao Qiu

The transient multiphase flow behavior in a single-strand tundish during ladle change was studied using physical modeling. The water and silicon oil were employed to simulate the liquid steel and slag. The effect of the turbulence inhibitor on the slag entrainment and the steel exposure during ladle change were evaluated and discussed. The effect of the slag carry-over on the water-oil-air flow was also analyzed. For the original tundish, the top oil phase in the impact zone was continuously dragged into the tundish bath and opened during ladle change, forming an emulsification phenomenon. By decreasing the liquid velocities in the upper part of the impact zone, the turbulence inhibitor decreased considerably the amount of entrained slag and the steel exposure during ladle change, thereby eliminating the emulsification phenomenon. Furthermore, the use of the TI-2 effectively lowered the effect of the slag carry-over on the steel cleanliness by controlling the movement of slag droplets. The results from industrial trials indicated that the application of the TI-2 reduced considerably the number of linear inclusions caused by ladle change in hot-rolled strip coils.


2019 ◽  
Vol 6 (6) ◽  
pp. 181902 ◽  
Author(s):  
Junchen Lv ◽  
Yuan Chi ◽  
Changzhong Zhao ◽  
Yi Zhang ◽  
Hailin Mu

Reliable measurement of the CO 2 diffusion coefficient in consolidated oil-saturated porous media is critical for the design and performance of CO 2 -enhanced oil recovery (EOR) and carbon capture and storage (CCS) projects. A thorough experimental investigation of the supercritical CO 2 diffusion in n -decane-saturated Berea cores with permeabilities of 50 and 100 mD was conducted in this study at elevated pressure (10–25 MPa) and temperature (333.15–373.15 K), which simulated actual reservoir conditions. The supercritical CO 2 diffusion coefficients in the Berea cores were calculated by a model appropriate for diffusion in porous media based on Fick's Law. The results show that the supercritical CO 2 diffusion coefficient increases as the pressure, temperature and permeability increase. The supercritical CO 2 diffusion coefficient first increases slowly at 10 MPa and then grows significantly with increasing pressure. The impact of the pressure decreases at elevated temperature. The effect of permeability remains steady despite the temperature change during the experiments. The effect of gas state and porous media on the supercritical CO 2 diffusion coefficient was further discussed by comparing the results of this study with previous study. Based on the experimental results, an empirical correlation for supercritical CO 2 diffusion coefficient in n -decane-saturated porous media was developed. The experimental results contribute to the study of supercritical CO 2 diffusion in compact porous media.


2021 ◽  
Author(s):  
Nicolas Gaillard ◽  
Matthieu Olivaud ◽  
Alain Zaitoun ◽  
Mahmoud Ould-Metidji ◽  
Guillaume Dupuis ◽  
...  

Abstract Polymer flooding is one of the most mature EOR technology applied successfully in a broad range of reservoir conditions. The last developments made in polymer chemistries allowed pushing the boundaries of applicability towards higher temperature and salinity carbonate reservoirs. Specifically designed sulfonated acrylamide-based copolymers (SPAM) have been proven to be stable for more than one year at 120°C and are the best candidates to comply with Middle East carbonate reservoir conditions. Numerous studies have shown good injectivity and propagation properties of SPAM in carbonate cores with permeabilities ranging from 70 to 150 mD in presence of oil. This study aims at providing new insights on the propagation of SPAM in carbonate reservoir cores having permeabilities ranging between 10 and 40 mD. Polymer screening was performed in the conditions of ADNOC onshore carbonate reservoir using a 260 g/L TDS synthetic formation brine together with oil and core material from the reservoir. All the experiments were performed at residual oil saturation (Sor). The experimental approach aimed at reproducing the transport of the polymer entering the reservoir from the sand face up to a certain depth. Three reservoir coreflood experiments were performed in series at increasing temperatures and decreasing rates to mimic the progression of the polymer in the reservoir with a radial velocity profile. A polymer solution at 2000 ppm was injected in the first core at 100 mL/h and 40°C. Effluents were collected and injected in the second core at 20 mL/h and 70°C. Effluents were collected again and injected in the third core at 4 mL/h and 120°C. A further innovative approach using reservoir minicores (6 mm length disks) was also implemented to screen the impact of different parameters such as Sor, molecular weight and prefiltration step on the injectivity of the polymer solutions. According to minicores data, shearing of the polymer should help to ensure good propagation and avoid pressure build-up at the core inlet. This result was confirmed through an injection in a larger core at Sor and at 120°C. When comparing the injection of sheared and unsheared polymer at the same concentration, core inlet impairment was suppressed with the sheared polymer and the same range of mobility reduction (Rm) was achieved in the internal section of the core although viscosity was lower for the sheared polymer. Such result indicates that shearing is an efficient way to improve injectivity while maximizing the mobility reduction by suppressing the loss of product by filtration/retention at the core inlet. This paper gives new insights concerning SPAM rheology in low permeability carbonate cores. Additionally, it provides an innovative and easier approach for screening polymer solutions to anticipate their propagation in more advanced coreflooding experiments.


Author(s):  
Siegfried Bolenz ◽  
Laura Glöde

AbstractThe French paradox is the observation of low heart disease death rates despite high intake of cholesterol and saturated fat, possibly related to the consumption of red wine containing polyphenols. Those are also found in pomace and affect health as radical catchers inhibiting cancer, inflammations and arteriosclerosis. European cocoa regulation allows incorporating up to 40% of added foodstuffs into chocolate, so grape pomace can be used. Cocoa itself is known as a very good source of phenolic compounds, and consequently dark chocolate is considered to have similar health benefits as red wine. Milk chocolates contain only little fat-free cocoa dry matter; therefore, grape pomace is considered most beneficial here. Entire pomace or flour from seeds have been tested to evaluate technical aspects as well as the impact on chocolate properties like particle size distribution, flow properties, total phenol content, antioxidative capacity and sensory perception. Initial trials revealed that additional drying and also pre-grinding was necessary before pomace can be used as an ingredient. Various samples were produced by the coarse conching process, which uses a ball mill for size reduction below 30 µm. A difficulty arises when some tough particles slip through without being properly ground; D99-values can be used to better control this issue. Grape pomace contains almost as many polyphenols as cocoa liquor, so it can serve as a substitute. Its content and thus quality depends on gentle drying. Finally, adding, e.g., just 3.5% was able to significantly increase the polyphenol contents of milk chocolate.


Sign in / Sign up

Export Citation Format

Share Document