Injectivity and Propagation of Sulfonated Acrylamide-Based Copolymers in Low Permeability Carbonate Reservoir Cores in Harsh Salinity and Temperature Conditions : Challenges and Learnings from a Middle East Onshore Case Study

2021 ◽  
Author(s):  
Nicolas Gaillard ◽  
Matthieu Olivaud ◽  
Alain Zaitoun ◽  
Mahmoud Ould-Metidji ◽  
Guillaume Dupuis ◽  
...  

Abstract Polymer flooding is one of the most mature EOR technology applied successfully in a broad range of reservoir conditions. The last developments made in polymer chemistries allowed pushing the boundaries of applicability towards higher temperature and salinity carbonate reservoirs. Specifically designed sulfonated acrylamide-based copolymers (SPAM) have been proven to be stable for more than one year at 120°C and are the best candidates to comply with Middle East carbonate reservoir conditions. Numerous studies have shown good injectivity and propagation properties of SPAM in carbonate cores with permeabilities ranging from 70 to 150 mD in presence of oil. This study aims at providing new insights on the propagation of SPAM in carbonate reservoir cores having permeabilities ranging between 10 and 40 mD. Polymer screening was performed in the conditions of ADNOC onshore carbonate reservoir using a 260 g/L TDS synthetic formation brine together with oil and core material from the reservoir. All the experiments were performed at residual oil saturation (Sor). The experimental approach aimed at reproducing the transport of the polymer entering the reservoir from the sand face up to a certain depth. Three reservoir coreflood experiments were performed in series at increasing temperatures and decreasing rates to mimic the progression of the polymer in the reservoir with a radial velocity profile. A polymer solution at 2000 ppm was injected in the first core at 100 mL/h and 40°C. Effluents were collected and injected in the second core at 20 mL/h and 70°C. Effluents were collected again and injected in the third core at 4 mL/h and 120°C. A further innovative approach using reservoir minicores (6 mm length disks) was also implemented to screen the impact of different parameters such as Sor, molecular weight and prefiltration step on the injectivity of the polymer solutions. According to minicores data, shearing of the polymer should help to ensure good propagation and avoid pressure build-up at the core inlet. This result was confirmed through an injection in a larger core at Sor and at 120°C. When comparing the injection of sheared and unsheared polymer at the same concentration, core inlet impairment was suppressed with the sheared polymer and the same range of mobility reduction (Rm) was achieved in the internal section of the core although viscosity was lower for the sheared polymer. Such result indicates that shearing is an efficient way to improve injectivity while maximizing the mobility reduction by suppressing the loss of product by filtration/retention at the core inlet. This paper gives new insights concerning SPAM rheology in low permeability carbonate cores. Additionally, it provides an innovative and easier approach for screening polymer solutions to anticipate their propagation in more advanced coreflooding experiments.

1982 ◽  
Vol 22 (05) ◽  
pp. 647-657 ◽  
Author(s):  
J.P. Batycky ◽  
B.B. Maini ◽  
D.B. Fisher

Abstract Miscible gas displacement data obtained from full-diameter carbonate reservoir cores have been fitted to a modified miscible flow dispersion-capacitance model. Starting with earlier approaches, we have synthesized an algorithm that provides rapid and accurate determination of the three parameters included in the model: the dispersion coefficient, the flowing fraction of displaceable volume, and the rate constant for mass transfer between flowing and stagnant volumes. Quality of fit is verified with a finite-difference simulation. The dependencies of the three parameters have been evaluated as functions of the displacement velocity and of the water saturation within four carbonate cores composed of various amounts of matrix, vug, and fracture porosity. Numerical simulation of a composite core made by stacking three of the individual cores has been compared with the experimental data. For comparison, an analysis of Berea sandstone gas displacement also has been provided. Although the sandstone displays a minor dependence of gas recovery on water saturation, we found that the carbonate cores are strongly affected by water content. Such behavior would not be measurable if small carbonate samples that can reflect only matrix properties were used. This study therefore represents a significant assessment of the dispersion-capacitance model for carbonate cores and its ability to reflect changes in pore interconnectivity that accompany water saturation alteration. Introduction Miscible displacement processes are used widely in various aspects of oil recovery. A solvent slug injected into a reservoir can be used to displace miscibly either oil or gas. The necessary slug size is determined by the rate at which deterioration can occur as the slug is Another commonly used miscible process involves addition of a small slug within the injected fluids or gases to determine the nature and extent of inter well communication. The quantity of tracer material used is dictated by analytical detection capabilities and by an understanding of the miscible displacement properties of the reservoir. We can develop such understanding by performing one-dimensional (1D) step-change miscible displacement experiments within the laboratory with selected reservoir core material. The effluent profiles derived from the experiments then are fitted to a suitable mathematical model to express the behavior of each rock type through the use of a relatively small number of parameters. This paper illustrates the efficient application of the three-parameter, dispersion-capacitance model. Its application previously has been limited to use with small homogeneous plugs normally composed of intergranular and intencrystalline porosity, and its suitability for use with cores displaying macroscopic heterogeneity has been questioned. Consequently, in addition to illustrating its use with a homogeneous sandstone, we fit data derived from previously reported full-diameter carbonate cores. As noted earlier, these cores were heterogeneous, and each of them displayed different dual or multiple types of porosity characteristic of vugular and fractured carbonate rocks. Dispersion-Capacitance Model The displacement efficiency of one fluid by a second immiscible fluid within a porous medium depends on the complexity of rock and fluid properties. SPEJ P. 647^


2019 ◽  
Vol 14 ◽  
pp. 155892501985944
Author(s):  
Jitlada Boonlertsamut ◽  
Supaphorn Thumsorn ◽  
Toshikazu Umemura ◽  
Hiroyuki Hamada ◽  
Atsushi Sakuma

In this work, the spinning abilities of polyoxymethylene-based core–sheath bicomponent fibers were investigated. Bicomponent fibers were prepared using polyoxymethylene as the core material and poly(lactic acid) blended with polyoxymethylene or pure polyoxymethylene as sheath materials, and their characteristics were investigated and compared. Fiber properties such as elongation are important because they directly relate to the spinning performance during fiber processing. This work reports the impact of the composition designation of the core–sheath bicomponent fibers on the controllable stability of poly(lactic acid) in polyoxymethylene–poly(lactic acid) blends in the fibers, as well as the influence of the core–sheath material on the structure, fiber diameter and distribution, thermal stability, and mechanical properties of the core–sheath bicomponent fibers. It was found that the selection of core and sheath materials affected the structural characteristics of the fibers. The polyoxymethylene core–polyoxymethylene sheath (FV) fiber showed dimensional stability. However, the polyoxymethylene core–poly(lactic acid)/polyoxymethylene sheath (FT30) fiber provided the optimum limit of poly(lactic acid) content for controlling the stable properties of the core–sheath bicomponent fibers.


Processes ◽  
2019 ◽  
Vol 7 (3) ◽  
pp. 159
Author(s):  
Yahong Wu ◽  
Weiwei Luo ◽  
Xunan Jia ◽  
Haoqing Fang ◽  
Honggang Wang ◽  
...  

We investigated the performance of viscoelastic surfactant (VES) solution when applied in treatment on the uninvaded matrix using core flooding tests to analyze the impact of VES/CaCl2 concentration on fluid viscosity. In this paper, core samples from Tahe carbonate reservoir, with an average permeability less than 0.02 × 10−3 μm−2 and a small average porosity in the range of approximately 0.04–5.24% are used in the experiments. Computed tomography (CT) scanning is used to provide a detailed description of inner structure variation of cores after the acid system treatment. The results confirmed that a large pressure difference contributed to fracture propagation and the relative permeability of water increased significantly after the treatment. It was also found that higher concentrations of VES and/or Ca2+ induced higher viscosity and a stronger fracturing effect, while a lower concentration improved the reaction rates and etching effect, generating small worm holes inside the core. Foam in-situ produced during the etching process is the major contributor to the fluid viscosity enhancement. The permeability of fracture formed on the surface of the core is more sensitive to the confining pressure. These findings can help better understand the rheological properties of the acid system and etching and fracturing mechanisms during acid treatment, and which provides instructions for field implementation.


Author(s):  
Cihan Kaboglu

Sandwich structures are popular in applications in which the weight of the component affects the efficiency, especially in the aviation and aerospace industries. This study aims to understand the impact behaviour of sandwich structures with different core materials. Sandwich structures are manufactured with glass fibre reinforced polymer skins and balsa wood, polyethylene terephthalate (PET) and polyvinyl chloride (PVC) core through resin infusion under flexible tools. Three different core materials were tested and compared using the damaged area of the back face of the sample. The effect of the core materials on the mechanical behaviour of the structures is crucial. The results showed that the microstructure of the core materials plays an important role, because althoughthe density of balsa wood is greater than the density of PET and PVC, the structures having PVC and PET as core materials undergo less damage than those having balsa wood as a core material. Keywords: Sandwich composite, impact behaviour, core materials.


2019 ◽  
pp. 16-21
Author(s):  
Danil A. Kobylinskiy ◽  
Mikhail D. Zavatsky ◽  
Ivan I. Nesterov ◽  
Vitaliya O. Naumenko ◽  
Andrey A. Ponomarev

The article is devoted to the problem of improving the substantiation of the diagnostics of production Jurassic and Neocomian reservoirs in the West Siberian basin. We have formed the complex of geochemical investigations of core material to solve this problem. It includes extraction of bitumen with its material composition detection, thermal desorption and analysis of retained hydrocarbons. Using the obtained data, we have carried out a comparative analysis of Jurassic sediment intervals in two wells within one field. We studied the quantitative and qualitative characteristics of the hydrocarbon core fluid, determined the geochemical criteria of its mobility in reservoir conditions, namely the ratio of the naphthenic component to n-alkanes. Also, we carried out inter-well correlation of the relations of n-alkanes and isoprenoids, established the facies conditions of sedimentogenesis and oxidation-reduction conditions of the initial stage of organic matter fossilization. Based on the chromatograms of retained gases we determined the efficiency criteria of the interval such as benzene/n-hexane and toluene/n-heptane. Conclusions about the saturation of the studied intervals were confirmed by inspection test record. The results of the work showed that complex geochemical studies of the core can significantly increase the reliability of the diagnosis of the drilled sediments saturation.


2014 ◽  
Vol 1015 ◽  
pp. 129-134
Author(s):  
Pu Fu Xiao ◽  
Zheng Ming Yang ◽  
Ya Pu Zhang ◽  
Chang Cheng Gai

In order to understand the characteristics and flow characteristics of the low permeability carbonate reservoir of Middle East, in this paper, we take a Middle Eastern oil field as an example, using constant-rate mercury penetration technique, analyzing the micro pore structure characteristics of carbonate cores. The results show that, the pore radius distribution characteristics of different permeability is similar, mostly between 90-200μm, the peak occur at about 120μm. After that, we get the main factor affecting the reservoir physical quality of carbonate reservoir is throat rather than pore. And compared with the same permeability of sandstone cores, found that even if a poor sorting and strong heterogeneity of carbonate cores, but due to its throat contribution to permeability is very balanced, show the low permeability carbonate difficulty of development smaller than sandstone, only reducing the pore throat ratio, improve the ability of reservoir seepage, can have a good development effect.


2017 ◽  
Vol 2017 ◽  
pp. 1-6 ◽  
Author(s):  
Xingwang Shi ◽  
Zhengming Yang ◽  
Yapu Zhang ◽  
Guangya Zhu ◽  
Qianhua Xiao

To study the flow mechanism under different displacement modes of low permeability carbonate reservoir in the Middle East and to improve the utilization of various types of reservoirs, the physical simulation experiments of water flooding by different displacement methods were carried out. Selecting two types of rock samples with different permeability levels, two-layer coinjection and separated production experiments by samples I and III and conventional water flooding experiments by samples II and IV were carried out. In addition, by using low magnetic field nuclear magnetic resonance, the development effect of microscopic pore structure under the different injection-production models was analyzed. Results show that, compared with the coinjection, the recovery rate of sample I was higher than II, 19.30%; sample III was lower than IV, 23.22%; and the comprehensive recovery degree reduced by 3.92%. NMR data also show that the crude oil is mainly distributed in the large pore throat; after water flooding, the displacement is also within the large pore throat, whereas the small pore throat is mainly obtained by the effect of infiltration absorption. The above studies provide a laboratory basis and foundation for the further development of low permeability carbonate reservoir in different Middle East strata.


2016 ◽  
Vol 827 ◽  
pp. 61-64
Author(s):  
Ladislav Fojtl ◽  
Soňa Rusnáková ◽  
Milan Žaludek ◽  
Vladimír Rusnák

In this work the mechanical performance of various sandwich constructions with respect to core material were experimentally evaluated. Sandwich structures were made of glass prepreg and three types of plastic core using vacuum bagging, technology traditionally used for production of parts for transport industry. The aim of this study is to analyze the impact of the core material type and its thickness on bending behavior at different environmental temperatures. Moreover, the effect of core layers compared to one layer core of same thickness was determined. Conducted research provided useful information of bending behavior and showed specific failure modes of individual sandwich constructions.


Coatings ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 657 ◽  
Author(s):  
Xiaoxing Yan ◽  
Wenwen Peng

Microcapsules of a waterborne core material were prepared using a waterborne primer. The microcapsules of the waterborne core material were added to the waterborne primer to explore the effects of different core–shell ratios and mass fractions of the microcapsules on the property of the waterborne primer coating on the wooden surface. The results show that as the mass fraction of the microcapsules increased, the chromatic aberration increased by degrees, the glossiness decreased gradually, and the hardness increased by degrees, whilst—except for the coating with 0.50:1 microcapsules—the adhesion decreased gradually. When the mass fraction of the microcapsules increased, the impact resistance increased first and decreased later, or remained unchanged after reaching a certain value. When the mass fraction of the microcapsules increased, the elongation at the break increased first and decreased later. When the core–shell ratio was small and the mass fraction was between 5.0% and 15.0%, the coating had better liquid resistance. When the core–shell ratio was 0.67:1 and the mass fraction was 10.0%, the overall property of the coating on the Basswood was the best. The technology of microencapsulation provides a technical reference for the waterborne primer with self-repair qualities on the surface of wooden products.


Sign in / Sign up

Export Citation Format

Share Document