Anisotropic Waveform Inversion for Microseismic Source Parameters

Author(s):  
I. Tsvankin ◽  
O. Jarillo Michel
2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Hijrah Saputra ◽  
Wahyudi Wahyudi ◽  
Iman Suardi ◽  
Ade Anggraini ◽  
Wiwit Suryanto

AbstractThis study comprehensively investigates the source mechanisms associated with the mainshock and aftershocks of the Mw = 6.3 Yogyakarta earthquake which occurred on May 27, 2006. The process involved using moment tensor inversion to determine the fault plane parameters and joint inversion which were further applied to understand the spatial and temporal slip distributions during the earthquake. Moreover, coseismal slip distribution was overlaid with the relocated aftershock distribution to determine the stress field variations around the tectonic area. Meanwhile, the moment tensor inversion made use of near-field data and its Green’s function was calculated using the extended reflectivity method while the joint inversion used near-field and teleseismic body wave data which were computed using the Kikuchi and Kanamori methods. These data were filtered through a trial-and-error method using a bandpass filter with frequency pairs and velocity models from several previous studies. Furthermore, the Akaike Bayesian Information Criterion (ABIC) method was applied to obtain more stable inversion results and different fault types were discovered. Strike–slip and dip-normal were recorded for the mainshock and similar types were recorded for the 8th aftershock while the 9th and 16th June were strike slips. However, the fault slip distribution from the joint inversion showed two asperities. The maximum slip was 0.78 m with the first asperity observed at 10 km south/north of the mainshock hypocenter. The source parameters discovered include total seismic moment M0 = 0.4311E + 19 (Nm) or Mw = 6.4 with a depth of 12 km and a duration of 28 s. The slip distribution overlaid with the aftershock distribution showed the tendency of the aftershock to occur around the asperities zone while a normal oblique focus mechanism was found using the joint inversion.


1990 ◽  
Vol 80 (5) ◽  
pp. 1099-1117 ◽  
Author(s):  
Diane I. Doser

Abstract Body waveform inversion techniques are used to study the source parameters of four earthquakes occurring between 1937 and 1954 along the southern San Jacinto and Imperial faults (1937 Buck Ridge, 1940 Imperial Valley, 1942 Borrego Mountain, and 1954 Salada Wash events). All earthquakes had simple rupture histories with the exception of the 1940 Imperial Valley main shock, which consisted of at least four subevents whose relative locations indicate unilateral rupture toward the southeast. Earthquakes in regions of high heat flow (>80 mW/m2) had focal depths near the base of the seismogenic zone (8 to 10 km). The 1937 Buck Ridge earthquake, located in a region of lower heat flow, however, appears to have occurred at a shallow (3 ± 2 km) depth. The location, mechanism, and aftershock distribution for the 1942 Borrego Mountain earthquake suggest it could have occurred along the Split Mountain fault, a recently identified northeast-trending cross fault located between the Elsinore and Coyote Creek faults or along an unnamed fault that parallels the trend of the Coyote Creek fault. Moment and rupture length estimates obtained from this study agree well with estimates obtained in previous studies that used different data sets.


Geophysics ◽  
2017 ◽  
Vol 82 (4) ◽  
pp. WA95-WA103 ◽  
Author(s):  
Oscar Jarillo Michel ◽  
Ilya Tsvankin

Waveform inversion (WI), which has been extensively used in reflection seismology, could provide improved velocity models and event locations for microseismic surveys. Here, we develop an elastic WI algorithm for anisotropic media designed to estimate the 2D velocity field along with the source parameters (location, origin time, and moment tensor) from microseismic data. The gradient of the objective function is obtained with the adjoint-state method, which requires just two modeling simulations at each iteration. In the current implementation the source coordinates and velocity parameters are estimated sequentially at each stage of the inversion to minimize trade-offs and improve the convergence. Synthetic examples illustrate the accuracy of the inversion for layered VTI (transversely isotropic with a vertical symmetry axis) media, as well as the sensitivity of the velocity-analysis results to noise, the length of the receiver array, errors in the initial model, and variability in the moment tensor of the recorded events.


2005 ◽  
Vol 162 (3) ◽  
pp. 495-513 ◽  
Author(s):  
Luminita Ardeleanu ◽  
Mircea Radulian ◽  
Jan Šílený ◽  
Giuliano Francesco Panza

2021 ◽  
Vol 946 (1) ◽  
pp. 012005
Author(s):  
A Yu Polets

Abstract The paper presents the results of waveform inversion of the Mw 6.8 August 4 (5), 2000 Uglegorsk earthquake (Sakhalin Island, Russia). The detailed rupture process of the 2000 Uglegorsk earthquake was simulated using the waveform inversion method. The average parameters were calculated for both nodal planes. Waveform inversion was carried out on the basis of Global Seismographic Network (GSN) data. Only P-waves from BHZ channels of all stations from the GSN were used. The simulated source parameters included a double-couple source, the scalar seismic moment, the source time function, and the slip directions. The performed studies made it possible to investigate the features of the rupture development and the amplitude of displacements along the east and west-dipping nodal planes of the August 4 (5), 2000 Uglegorsk earthquake. The obtained P-slip model for the 2000 Uglegorsk earthquake source area is in good agreement with the surface manifestations of the rupture according to the field geology data and the results of geodetic inversion.


Author(s):  
Hernando Tavera ◽  
Bertrand Delouis ◽  
Arturo Mercado ◽  
David Portugal

Abstract The Loreto earthquake of 26 May 2019 occurred below the extreme northeast part of Peru at a depth of 140 km within the subducting Nazca plate at a distance of 700 km from the trench Peru–Chile. The orientation of the seismic source was obtained from waveform inversion in the near field using velocity and strong-motion data. The rupture occurred in normal faulting corresponding to a tensional process with T axis oriented in east–west direction similar to the direction of convergence between the Nazca and South America plates. The analysis of the strong-motion data shows that the levels of ground shaking are very heterogeneous with values greater than 50 Gal up to distances of 300 km; the maximum recorded acceleration of 122 Gal at a distance of 100 km from the epicenter. The Loreto earthquake is classified as a large extensional event in the descending Nazca slab in the transition from flat-slab geometry to greater dip.


Sign in / Sign up

Export Citation Format

Share Document