Direct gas-bearing Prediction of Carbonate Using Multi-wave Seismic Attributes

Author(s):  
H. Wang ◽  
H. Liang ◽  
J. Gao ◽  
K. Cheng ◽  
S. Li ◽  
...  
2019 ◽  
Vol 12 (23) ◽  
Author(s):  
Bo Wang ◽  
Shengdong Liu ◽  
Fubao Zhou ◽  
Jialin Hao

2015 ◽  
Vol 51 (4) ◽  
pp. 723-744 ◽  
Author(s):  
Tahir Azeem ◽  
Wang Yanchun ◽  
Perveiz Khalid ◽  
Liu Xueqing ◽  
Fang Yuan ◽  
...  

2017 ◽  
Vol 96 (5) ◽  
pp. s71-s85 ◽  
Author(s):  
Marloes Kortekaas ◽  
Bastiaan Jaarsma

AbstractThe Groningen field is the largest onshore gas field in Europe. The gas-bearing section comprises aeolian and fluvial Rotliegend sandstones of Permian age and fluvial sandstones of Carboniferous age. Continuous production since 1963 has led to induced seismicity starting in the early 1990s.Faults at reservoir level play a major role in the seismicity in the Groningen field. Fault slip is expected when shear traction is sufficient to overcome frictional resistance on the fault surface. Clear insights into which faults and fault segments are most susceptible to seismicity could be used to optimise production and minimise the seismic risk. To gain these insights, a detailed and realistic fault model is required as input to both statistical analyses on seismicity and deterministic geomechanical modelling of seismogenic behaviour along fault planes. Geometrical seismic attributes and, subsequently, fault planes were extracted from a reprocessed and depth-imaged 3D seismic volume. This resulted in a detailed visualisation of the faults at reservoir level, with extension into the deeper strata below the reservoir in many cases. They represent fault planes with realistic dimensions and shapes. The fault map based on seismic attributes suggests the presence of faults that have not been included in studies on Groningen seismicity before. The improved fault definition correlates with recent earthquake hypocentres. We conclude that a detailed fault model of the Groningen field can be created using 3D seismic attributes and that detailed 3D fault planes can be extracted from these attributes. The results can be used as input to statistical and geomechanical analyses on seismicity.


Author(s):  
V.S. Brigida ◽  
◽  
Yu.V. Dmitrak ◽  
O.Z. Gabaraev ◽  
V.I. Golik ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document