ABSTRACT: A Quantitative Analysis of Seismic Attributes for Prediction of Reservoir Parameters Using 3-D Seismic Data in a Gas Bearing Deltaic Sequence, Mid Tapti Field, West Coast Offshore, India

AAPG Bulletin ◽  
2000 ◽  
Vol 84 ◽  
Author(s):  
Bhandari, S.K.1, S. Nayak2, A.K. Jo
2015 ◽  
Vol 3 (1) ◽  
pp. SB5-SB15 ◽  
Author(s):  
Kurt J. Marfurt ◽  
Tiago M. Alves

Seismic attributes are routinely used to accelerate and quantify the interpretation of tectonic features in 3D seismic data. Coherence (or variance) cubes delineate the edges of megablocks and faulted strata, curvature delineates folds and flexures, while spectral components delineate lateral changes in thickness and lithology. Seismic attributes are at their best in extracting subtle and easy to overlook features on high-quality seismic data. However, seismic attributes can also exacerbate otherwise subtle effects such as acquisition footprint and velocity pull-up/push-down, as well as small processing and velocity errors in seismic imaging. As a result, the chance that an interpreter will suffer a pitfall is inversely proportional to his or her experience. Interpreters with a history of making conventional maps from vertical seismic sections will have previously encountered problems associated with acquisition, processing, and imaging. Because they know that attributes are a direct measure of the seismic amplitude data, they are not surprised that such attributes “accurately” represent these familiar errors. Less experienced interpreters may encounter these errors for the first time. Regardless of their level of experience, all interpreters are faced with increasingly larger seismic data volumes in which seismic attributes become valuable tools that aid in mapping and communicating geologic features of interest to their colleagues. In terms of attributes, structural pitfalls fall into two general categories: false structures due to seismic noise and processing errors including velocity pull-up/push-down due to lateral variations in the overburden and errors made in attribute computation by not accounting for structural dip. We evaluate these errors using 3D data volumes and find areas where present-day attributes do not provide the images we want.


2021 ◽  
pp. 1-69
Author(s):  
Marwa Hussein ◽  
Robert R. Stewart ◽  
Deborah Sacrey ◽  
Jonny Wu ◽  
Rajas Athale

Net reservoir discrimination and rock type identification play vital roles in determining reservoir quality, distribution, and identification of stratigraphic baffles for optimizing drilling plans and economic petroleum recovery. Although it is challenging to discriminate small changes in reservoir properties or identify thin stratigraphic barriers below seismic resolution from conventional seismic amplitude data, we have found that seismic attributes aid in defining the reservoir architecture, properties, and stratigraphic baffles. However, analyzing numerous individual attributes is a time-consuming process and may have limitations for revealing small petrophysical changes within a reservoir. Using the Maui 3D seismic data acquired in offshore Taranaki Basin, New Zealand, we generate typical instantaneous and spectral decomposition seismic attributes that are sensitive to lithologic variations and changes in reservoir properties. Using the most common petrophysical and rock typing classification methods, the rock quality and heterogeneity of the C1 Sand reservoir are studied for four wells located within the 3D seismic volume. We find that integrating the geologic content of a combination of eight spectral instantaneous attribute volumes using an unsupervised machine-learning algorithm (self-organizing maps [SOMs]) results in a classification volume that can highlight reservoir distribution and identify stratigraphic baffles by correlating the SOM clusters with discrete net reservoir and flow-unit logs. We find that SOM classification of natural clusters of multiattribute samples in the attribute space is sensitive to subtle changes within the reservoir’s petrophysical properties. We find that SOM clusters appear to be more sensitive to porosity variations compared with lithologic changes within the reservoir. Thus, this method helps us to understand reservoir quality and heterogeneity in addition to illuminating thin reservoirs and stratigraphic baffles.


Author(s):  
Oluwatoyin Khadijat Olaleye ◽  
Pius Adekunle Enikanselu ◽  
Michael Ayuk Ayuk

AbstractHydrocarbon accumulation and production within the Niger Delta Basin are controlled by varieties of geologic features guided by the depositional environment and tectonic history across the basin. In this study, multiple seismic attribute transforms were applied to three-dimensional (3D) seismic data obtained from “Reigh” Field, Onshore Niger Delta to delineate and characterize geologic features capable of harboring hydrocarbon and identifying hydrocarbon productivity areas within the field. Two (2) sand units were delineated from borehole log data and their corresponding horizons were mapped on seismic data, using appropriate check-shot data of the boreholes. Petrophysical summary of the sand units revealed that the area is characterized by high sand/shale ratio, effective porosity ranged from 16 to 36% and hydrocarbon saturation between 72 and 92%. By extracting attribute maps of coherence, instantaneous frequency, instantaneous amplitude and RMS amplitude, characterization of the sand units in terms of reservoir geomorphological features, facies distribution and hydrocarbon potential was achieved. Seismic attribute results revealed (1) characteristic patterns of varying frequency and amplitude areas, (2) major control of hydrocarbon accumulation being structural, in terms of fault, (3) prospective stratigraphic pinch-out, lenticular thick hydrocarbon sand, mounded sand deposit and barrier bar deposit. Seismic Attributes analysis together with seismic structural interpretation revealed prospective structurally high zones with high sand percentage, moderate thickness and high porosity anomaly at the center of the field. The integration of different seismic attribute transforms and results from the study has improved our understanding of mapped sand units and enhanced the delineation of drillable locations which are not recognized on conventional seismic interpretations.


Geophysics ◽  
2021 ◽  
pp. 1-97
Author(s):  
kai lin ◽  
Bo Zhang ◽  
Jianjun Zhang ◽  
Huijing Fang ◽  
Kefeng Xi ◽  
...  

The azimuth of fractures and in-situ horizontal stress are important factors in planning horizontal wells and hydraulic fracturing for unconventional resources plays. The azimuth of natural fractures can be directly obtained by analyzing image logs. The azimuth of the maximum horizontal stress σH can be predicted by analyzing the induced fractures on image logs. The clustering of micro-seismic events can also be used to predict the azimuth of in-situ maximum horizontal stress. However, the azimuth of natural fractures and the in-situ maximum horizontal stress obtained from both image logs and micro-seismic events are limited to the wellbore locations. Wide azimuth seismic data provides an alternative way to predict the azimuth of natural fractures and maximum in-situ horizontal stress if the seismic attributes are properly calibrated with interpretations from well logs and microseismic data. To predict the azimuth of natural fractures and in-situ maximum horizontal stress, we focus our analysis on correlating the seismic attributes computed from pre-stack and post-stack seismic data with the interpreted azimuth obtained from image logs and microseismic data. The application indicates that the strike of the most positive principal curvature k1 can be used as an indicator for the azimuth of natural fractures within our study area. The azimuthal anisotropy of the dominant frequency component if offset vector title (OVT) seismic data can be used to predict the azimuth of maximum in-situ horizontal stress within our study area that is located the southern region of the Sichuan Basin, China. The predicted azimuths provide important information for the following well planning and hydraulic fracturing.


2021 ◽  
Author(s):  
I. Sumantri

BH field is one of the Globigerina limestone gas reservoir that exhibits strong seismic direct hydrocarbon indicator (DHI). This field is a 4-way dip faulted closure with Globigerina limestone as the main reservoir objective. The field was discovered back in 2011 by BH-1 exploration well and successfully penetrated about 350ft gross gas pay. BH-1 well was plugged and abandoned as Pliocene Globigerina limestone Mundu-Selorejo sequence gas discoveries. The laboratory analysis of sampled gas consists of 97.8% of CH4 and indicating a biogenic type of gas. This is the only exploration well drilled in this field and located on the crest of the structure. Seismic analysis both qualitative and quantitative, are common tools in delineating and characterizing reservoir. These methods usually make use of seismic data and well log collaboratively in the quest to reveal reservoir features internally. The lack of appraisal well in the area of study made the reservoir characterization process must be carried out thoroughly, incorporating several seismic datasets, both PSTM and PSDM, seismic gathers and stacks. Bounded by appraisal well limitation, this research looks into Gassmann's fluid substitution modeling, seismic forward modeling to confirm the DHI flat spot presence in the seismic, as well as seismic AVO analysis. Meanwhile, for quantitative analysis, model-based seismic post-stack inversion and simultaneous seismic pre-stack inversion were conducted in order to delineate the distribution of Globigerina limestone gas reservoir in BH Field. Through comprehensive analyses of qualitative and quantitative methods, this research may answer the challenge on how to intensively utilize seismic data to compensate the lack of appraisal well data in order to keep delivering a proper subsurface reservoir delineation.


Author(s):  
H. Wang ◽  
H. Liang ◽  
J. Gao ◽  
K. Cheng ◽  
S. Li ◽  
...  

2020 ◽  
Vol 8 (1) ◽  
pp. T89-T102
Author(s):  
David Mora ◽  
John Castagna ◽  
Ramses Meza ◽  
Shumin Chen ◽  
Renqi Jiang

The Daqing field, located in the Songliao Basin in northeastern China, is the largest oil field in China. Most production in the Daqing field comes from seismically thin sand bodies with thicknesses between 1 and 15 m. Thus, it is not usually possible to resolve Daqing reservoirs using only conventional seismic data. We have evaluated the effectiveness of seismic multiattribute analysis of bandwidth extended data in resolving and making inferences about these thin layers. Multiattribute analysis uses statistical methods or neural networks to find relationships between well data and seismic attributes to predict some physical property of the earth. This multiattribute analysis was applied separately to conventional seismic data and seismic data that were spectrally broadened using sparse-layer inversion because this inversion method usually increases the vertical resolution of the seismic. Porosity volumes were generated using target porosity logs and conventional seismic attributes, and isofrequency volumes were obtained by spectral decomposition. The resulting resolution, statistical significance, and accuracy in the determination of layer properties were higher for the predictions made using the spectrally broadened volume.


Sign in / Sign up

Export Citation Format

Share Document