Geochemical Characteristics and Thermal Simulation of Ordovician Source Rocks of Lower Paleozoic in Ordos Basin, China 1

Author(s):  
Qi Li ◽  
Jingli Yao ◽  
Yong Liu ◽  
Qianglu Chen ◽  
Liangzhong Ma
2016 ◽  
Vol 43 (4) ◽  
pp. 591-601 ◽  
Author(s):  
Dan LIU ◽  
Wenzheng ZHANG ◽  
Qingfen KONG ◽  
Ziqi FENG ◽  
Chenchen FANG ◽  
...  

2020 ◽  
Vol 8 (4) ◽  
pp. T981-T990
Author(s):  
Haijun Gao ◽  
Delu Li ◽  
Dingming Dong ◽  
Hongjun Jing ◽  
Hao Tang

The Chang 7 oil layer from the upper Triassic Yanchang Formation is an important layer for hydrocarbon exploration. Most studies on the Chang 7 oil layer have focused on the source rocks, while research on the sandstone is still inadequate, especially on the petrography and geochemical characteristics. Using seven sandstone samples of the Chang 7 oil layer in the Yanhe profile, the grain-size analysis, major elements, trace elements, and rare earth elements were tested. The results find that the sandstone of fine-grained sediments of the Chang 7 oil layer is dominated by arkose with a minor number of lithic arkose. The range of grain size (Mz) is from 2.72 to 3.92 Φ, and the C value and M value of the sandstone samples suggest characteristics of turbidity deposition. The Al/Si ratios of all of the samples imply high clay mineral content. The results of trace and rare earth elements demonstrate the reducing condition, freshwater, and cold and dry weather. The provenance of the sandstone samples is mainly from island arc acidic volcanic rock, and the type of provenance is mixed with sedimentary rock, granite, and alkaline basalt. The tectonic background is continental island arc. This study provides a systematic geologic foundation for the formation of sandstone of Chang 7 oil layer in Ordos Basin.


2017 ◽  
Vol 35 (2) ◽  
pp. 218-236 ◽  
Author(s):  
Xiaoqi Wu ◽  
Jianhui Zhu ◽  
Chunhua Ni ◽  
Kuang Li ◽  
Yanqing Wang ◽  
...  

The molecular composition, stable carbon and hydrogen isotopes, and light hydrocarbons of the Lower Paleozoic natural gas in the Daniudi gas field in the Ordos Basin were investigated to study the geochemical characteristics. The Lower Paleozoic gas in the Daniudi gas field displays methane contents of 87.41–93.34%, dryness coefficients (C1/C1–5) ranging from 0.886 to 0.978, δ13C1 and δ13C2 values ranging from −40.3 to −36.4‰, with an average of −38.3‰, and from −33.6 to −24.2‰, with an average of −28.4‰, respectively, and δD1 values ranging from −197 to −160‰. The alkane gas generally displays positive carbon and hydrogen isotopic series, and the C7 and C5–7 light hydrocarbons of the Lower Paleozoic gas are dominated by methylcyclohexane and iso-alkanes, respectively. The Lower Paleozoic gas in the Daniudi gas field is mixed from coal-derived and oil-associated gases, similar to that observed in the Jingbian gas field. The oil-associated gas in the Lower Paleozoic gas is secondary oil cracking gas and displays a lower cracking extent than that in the Jingbian gas field. The coal-derived gas in the Lower Paleozoic gas in the Daniudi gas field migrated from the Upper Paleozoic gas through the window area where the iron–aluminum mudstone caprocks in the Upper Carboniferous Benxi Formation were missing. The oil-associated gas in the Lower Paleozoic gas in the Daniudi gas field was probably derived from presalt source rocks in the Lower Ordovician Majiagou Formation rather than the limestone in the Upper Carboniferous Taiyuan Formation. It seems unlikely that the marlstone in the Upper Ordovician Beiguoshan Formation and shale in the Middle Ordovician Pingliang Formation on the western and southwestern margins of the Ordos Basin contributed to the oil-associated gas in the Lower Paleozoic gas in the Daniudi gas field.


2012 ◽  
Vol 30 (3) ◽  
pp. 373-388 ◽  
Author(s):  
Zhiqiang Meng ◽  
Hongguang Ji ◽  
Shenjun Qin ◽  
Cunliang Zhao

2013 ◽  
Vol 24 (5) ◽  
pp. 804-814 ◽  
Author(s):  
Senhu Lin ◽  
Xuanjun Yuan ◽  
Shizhen Tao ◽  
Zhi Yang ◽  
Songtao Wu

Sign in / Sign up

Export Citation Format

Share Document