Geochemical characteristics of the source rocks in Mesozoic Yanchang formation, central Ordos Basin

2013 ◽  
Vol 24 (5) ◽  
pp. 804-814 ◽  
Author(s):  
Senhu Lin ◽  
Xuanjun Yuan ◽  
Shizhen Tao ◽  
Zhi Yang ◽  
Songtao Wu
2017 ◽  
Vol 2017 ◽  
pp. 1-12 ◽  
Author(s):  
Xiaoli Zhang ◽  
Jinxian He ◽  
Yande Zhao ◽  
Hongchen Wu ◽  
Zeqiang Ren

Biomarker compounds that derived from early living organisms play an important role in oil and gas geochemistry and exploration since they can record the diagenetic evolution of the parent materials of crude oil and reflect the organic geochemical characteristics of crude oil and source rocks. To offer scientific basis for oil exploration and exploitation for study area, gas chromatography-mass spectrometry method is applied to study the biomarker compounds of crude oil in Southwestern Yishan Slope of Ordos Basin, through qualitatively and quantitatively analyzing separated materials. The crude oil of Yanchang Formation and the source rocks of Yan’an and Yanchang Formation were collected in order to systematically analyze the characteristics of the biomarker compounds in saturated hydrocarbon fractions and clarify the organic geochemical characteristics of crude oil. The distribution and composition of various types of hydrocarbon biomarker compounds in crude oil suggest that the parent materials of crude oil are composed of hydrobiont and terrigenous plants, and the crude oil is mature oil which is formed in the weak reducing fresh water environment. Oil source correlation results show that the crude oil of Yanchang Formation in Yishan Slope is sourced from the source rocks of Chang 7 subformation.


2021 ◽  
Vol 15 (1) ◽  
Author(s):  
Zhengyu Wu ◽  
Shijia Chen ◽  
Chengshan Li ◽  
Jian Yu ◽  
Yibo Chang ◽  
...  

2017 ◽  
Vol 5 (2) ◽  
pp. SF225-SF242 ◽  
Author(s):  
Xun Sun ◽  
Quansheng Liang ◽  
Chengfu Jiang ◽  
Daniel Enriquez ◽  
Tongwei Zhang ◽  
...  

Source-rock samples from the Upper Triassic Yanchang Formation in the Ordos Basin of China were geochemically characterized to determine variations in depositional environments, organic-matter (OM) source, and thermal maturity. Total organic carbon (TOC) content varies from 4 wt% to 10 wt% in the Chang 7, Chang 8, and Chang 9 members — the three OM-rich shale intervals. The Chang 7 has the highest TOC and hydrogen index values, and it is considered the best source rock in the formation. Geochemical evidence indicates that the main sources of OM in the Yanchang Formation are freshwater lacustrine phytoplanktons, aquatic macrophytes, aquatic organisms, and land plants deposited under a weakly reducing to suboxic depositional environment. The elevated [Formula: see text] sterane concentration and depleted [Formula: see text] values of OM in the middle of the Chang 7 may indicate the presence of freshwater cyanobacteria blooms that corresponds to a period of maximum lake expansion. The OM deposited in deeper parts of the lake is dominated by oil-prone type I or type II kerogen or a mixture of both. The OM deposited in shallower settings is characterized by increased terrestrial input with a mixture of types II and III kerogen. These source rocks are in the oil window, with maturity increasing with burial depth. The measured solid-bitumen reflectance and calculated vitrinite reflectance from the temperature at maximum release of hydrocarbons occurs during Rock-Eval pyrolysis ([Formula: see text]) and the methylphenanthrene index (MPI-1) chemical maturity parameters range from 0.8 to [Formula: see text]. Because the thermal labilities of OM are associated with the kerogen type, the required thermal stress for oil generation from types I and II mixed kerogen has a higher and narrower range of temperature for hydrocarbon generation than that of OM dominated by type II kerogen or types II and III mixed kerogen deposited in the prodelta and delta front.


2020 ◽  
Vol 8 (4) ◽  
pp. T981-T990
Author(s):  
Haijun Gao ◽  
Delu Li ◽  
Dingming Dong ◽  
Hongjun Jing ◽  
Hao Tang

The Chang 7 oil layer from the upper Triassic Yanchang Formation is an important layer for hydrocarbon exploration. Most studies on the Chang 7 oil layer have focused on the source rocks, while research on the sandstone is still inadequate, especially on the petrography and geochemical characteristics. Using seven sandstone samples of the Chang 7 oil layer in the Yanhe profile, the grain-size analysis, major elements, trace elements, and rare earth elements were tested. The results find that the sandstone of fine-grained sediments of the Chang 7 oil layer is dominated by arkose with a minor number of lithic arkose. The range of grain size (Mz) is from 2.72 to 3.92 Φ, and the C value and M value of the sandstone samples suggest characteristics of turbidity deposition. The Al/Si ratios of all of the samples imply high clay mineral content. The results of trace and rare earth elements demonstrate the reducing condition, freshwater, and cold and dry weather. The provenance of the sandstone samples is mainly from island arc acidic volcanic rock, and the type of provenance is mixed with sedimentary rock, granite, and alkaline basalt. The tectonic background is continental island arc. This study provides a systematic geologic foundation for the formation of sandstone of Chang 7 oil layer in Ordos Basin.


2021 ◽  
pp. 1-27
Author(s):  
Yan Cao ◽  
Hui Han ◽  
Shijia Chen ◽  
Rui Liu ◽  
Jingyue Zhang ◽  
...  

To explore the source and reservoir characteristics of Chang 6 tight oil in the Zhangjiagou area, we have extracted a suite of Chang 6 tight sandstones and the source rocks from the seventh to ninth members of the Upper Cretaceous Yanchang Formation in the Ordos Basin, China, respectively, using chloroform. We examined group components by fractionations of extracted organic matter. Using low-pressure gas adsorptions and gas chromatography-mass spectrometry, respectively, we analyzed the pore structure of the studied samples before and after extraction and the oil source of the separate saturated hydrocarbon components. The results indicate that the porosity of the Chang 6 tight sandstone is mainly distributed in the 8%–14% range, averaging 10.5%, the permeability of the studied reservoir is only approximately 0.16 × 10−3 μm2, and the pore-throat radius is mainly less than 2 μm. The major type of pores of the reservoir includes the residual intergranular pore, secondary intergranular dissolved pore, and intragranular dissolved pore. The micropore volume of the Chang 6 tight sandstone is in the range of 0.0071–0.0092 cm3/g, and the mesopore volume of the Chang 6 tight sandstone is in the range of 0.0237–0.0343 cm3/g. The micropore volume and micropore surface area significantly increased after chloroform extractions, and soluble hydrocarbons could be stored in micropores of the Chang 6 tight sandstone. The three sets of source rocks from the seventh to ninth members of the Upper Cretaceous Yanchang Formation are high quality by the evaluation of source rocks, and the Chang 7 has the highest value of source rocks, followed by Chang 9 and Chang 8. The pentacyclic triterpene characteristics (Ts-C30H-C30*) of Chang 6 crude oil are similar to those of Chang 7 source rock, and the tight oil of the Chang 6 member in the Zhangjiagou area originated from Chang 7 source rocks.


2020 ◽  
Author(s):  
Jiyuan You ◽  
Yiqun Liu ◽  
Dingwu Zhou

<p>The "black chimney" type of hydrothermal vents in the modern deep sea have become a popular research topic in many disciplines. Due to the actual conditions, the research on palaeo-thermal vents in geological history is relatively low. Fortunately, the discovery of hydrothermal vents and bio-fossils from the Chang 7 source rocks of the Yanchang Formation of the Triassic in the Ordos Basin, China, provides the best evidence for deciphering hydrothermal activity during geological history. Here, we report a case study. Through ordinary sheet observation, scanning electron microscopy and electron probe observation, layered grained siliceous rocks, dolomites, and hydrothermal mineral combinations, such as pyrite + dolomite + gypsum and calcite + barite, are found. Their unique petrological characteristics, mineral composition, and structure confirm the existence of palaeo-thermal fluid vents. We further analysed the geochemical characteristics and in situ isotope characteristics. The study found that Cs, U, Th, Pb, Ba and other trace elements of the sample showed positive abnormalities, in which values of U/Th were high; in addition, the enrichment of major elements such as Sr, Mn, and the in situ sulphur isotopes of pyrite reached 7.89%-10.88%. This study of hydrothermal vents over geological history is expected to provide new insights on the life forms of various extreme microorganisms in hydrothermal environments and on their formation of high-quality source rocks.</p>


Sign in / Sign up

Export Citation Format

Share Document