Permeability prediction with geostatistical seismic inversion constrained by rock physics

Author(s):  
R. Miele ◽  
D. Grana ◽  
J.F. Costa ◽  
P.Y. Bürkle ◽  
L.E. Varella ◽  
...  
Geophysics ◽  
2016 ◽  
Vol 81 (5) ◽  
pp. C177-C191 ◽  
Author(s):  
Yunyue Li ◽  
Biondo Biondi ◽  
Robert Clapp ◽  
Dave Nichols

Seismic anisotropy plays an important role in structural imaging and lithologic interpretation. However, anisotropic model building is a challenging underdetermined inverse problem. It is well-understood that single component pressure wave seismic data recorded on the upper surface are insufficient to resolve a unique solution for velocity and anisotropy parameters. To overcome the limitations of seismic data, we have developed an integrated model building scheme based on Bayesian inference to consider seismic data, geologic information, and rock-physics knowledge simultaneously. We have performed the prestack seismic inversion using wave-equation migration velocity analysis (WEMVA) for vertical transverse isotropic (VTI) models. This image-space method enabled automatic geologic interpretation. We have integrated the geologic information as spatial model correlations, applied on each parameter individually. We integrate the rock-physics information as lithologic model correlations, bringing additional information, so that the parameters weakly constrained by seismic are updated as well as the strongly constrained parameters. The constraints provided by the additional information help the inversion converge faster, mitigate the ambiguities among the parameters, and yield VTI models that were consistent with the underlying geologic and lithologic assumptions. We have developed the theoretical framework for the proposed integrated WEMVA for VTI models and determined the added information contained in the regularization terms, especially the rock-physics constraints.


2006 ◽  
Author(s):  
Kyle Spikes ◽  
Jack Dvorkin ◽  
Gary Mavko

2021 ◽  
Vol 40 (10) ◽  
pp. 751-758
Author(s):  
Fabien Allo ◽  
Jean-Philippe Coulon ◽  
Jean-Luc Formento ◽  
Romain Reboul ◽  
Laure Capar ◽  
...  

Deep neural networks (DNNs) have the potential to streamline the integration of seismic data for reservoir characterization by providing estimates of rock properties that are directly interpretable by geologists and reservoir engineers instead of elastic attributes like most standard seismic inversion methods. However, they have yet to be applied widely in the energy industry because training DNNs requires a large amount of labeled data that is rarely available. Training set augmentation, routinely used in other scientific fields such as image recognition, can address this issue and open the door to DNNs for geophysical applications. Although this approach has been explored in the past, creating realistic synthetic well and seismic data representative of the variable geology of a reservoir remains challenging. Recently introduced theory-guided techniques can help achieve this goal. A key step in these hybrid techniques is the use of theoretical rock-physics models to derive elastic pseudologs from variations of existing petrophysical logs. Rock-physics theories are already commonly relied on to generalize and extrapolate the relationship between rock and elastic properties. Therefore, they are a useful tool to generate a large catalog of alternative pseudologs representing realistic geologic variations away from the existing well locations. While not directly driven by rock physics, neural networks trained on such synthetic catalogs extract the intrinsic rock-physics relationships and are therefore capable of directly estimating rock properties from seismic amplitudes. Neural networks trained on purely synthetic data are applied to a set of 2D poststack seismic lines to characterize a geothermal reservoir located in the Dogger Formation northeast of Paris, France. The goal of the study is to determine the extent of porous and permeable layers encountered at existing geothermal wells and ultimately guide the location and design of future geothermal wells in the area.


2021 ◽  
pp. 1-42
Author(s):  
Maheswar Ojha ◽  
Ranjana Ghosh

The Indian National Gas Hydrate Program Expedition-01 in 2006 has discovered gas hydrate in Mahanadi offshore basin along the eastern Indian margin. However, well log analysis, pressure core measurements and Infra-Red (IR) anomalies reveal that gas hydrates are distributed as disseminated within the fine-grained sediment, unlike massive gas hydrate deposits in the Krishna-Godavari basin. 2D multi-channel seismic section, which crosses the Holes NGHP-01-9A and 19B located at about 24 km apart shows a continuous bottom-simulating reflector (BSR) along it. We aim to investigate the prospect of gas hydrate accumulation in this area by integrating well log analysis and seismic methods with rock physics modeling. First, we estimate gas hydrate saturation at these two Holes from the observed impedance using the three-phase Biot-type equation (TPBE). Then we establish a linear relationship between gas hydrate saturation and impedance contrast with respect to the water-saturated sediment. Using this established relation and impedance obtained from pre-stack inversion of seismic data, we produce a 2D gas hydrate-distribution image over the entire seismic section. Gas hydrate saturation estimated from resistivity and sonic data at well locations varies within 0-15%, which agrees well with the available pressure core measurements at Hole 19. However, the 2D map of gas hydrate distribution obtained from our method shows maximum gas hydrate saturation is about 40% just above the BSR between the CDP (common depth point) 1450 and 2850. The presence of gas-charged sediments below the BSR is one of the reasons for the strong BSR observed in the seismic section, which is depicted as low impedance in the inverted impedance section. Closed sedimentary structures above the BSR are probably obstructing the movements of free-gas upslope, for which we do not see the presence of gas hydrate throughout the seismic section above the BSR.


2019 ◽  
Vol 38 (5) ◽  
pp. 332-332
Author(s):  
Yongyi Li ◽  
Lev Vernik ◽  
Mark Chapman ◽  
Joel Sarout

Rock physics links the physical properties of rocks to geophysical and petrophysical observations and, in the process, serves as a focal point in many exploration and reservoir characterization studies. Today, the field of rock physics and seismic petrophysics embraces new directions with diverse applications in estimating static and dynamic reservoir properties through time-variant mechanical, thermal, chemical, and geologic processes. Integration with new digital and computing technologies is gradually gaining traction. The use of rock physics in seismic imaging, prestack seismic analysis, seismic inversion, and geomechanical model building also contributes to the increase in rock-physics influence. This special section highlights current rock-physics research and practices in several key areas, namely experimental rock physics, rock-physics theory and model studies, and the use of rock physics in reservoir characterizations.


Geophysics ◽  
2018 ◽  
Vol 83 (3) ◽  
pp. MR187-MR198 ◽  
Author(s):  
Yi Shen ◽  
Jack Dvorkin ◽  
Yunyue Li

Our goal is to accurately estimate attenuation from seismic data using model regularization in the seismic inversion workflow. One way to achieve this goal is by finding an analytical relation linking [Formula: see text] to [Formula: see text]. We derive an approximate closed-form solution relating [Formula: see text] to [Formula: see text] using rock-physics modeling. This relation is tested on well data from a clean clastic gas reservoir, of which the [Formula: see text] values are computed from the log data. Next, we create a 2D synthetic gas-reservoir section populated with [Formula: see text] and [Formula: see text] and generate respective synthetic seismograms. Now, the goal is to invert this synthetic seismic section for [Formula: see text]. If we use standard seismic inversion based solely on seismic data, the inverted attenuation model has low resolution and incorrect positioning, and it is distorted. However, adding our relation between velocity and attenuation, we obtain an attenuation model very close to the original section. This method is tested on a 2D field seismic data set from Gulf of Mexico. The resulting [Formula: see text] model matches the geologic shape of an absorption body interpreted from the seismic section. Using this [Formula: see text] model in seismic migration, we make the seismic events below the high-absorption layer clearly visible, with improved frequency content and coherency of the events.


2015 ◽  
Author(s):  
Shazia Asim* ◽  
Peimin Zhu ◽  
Tayyab Naseer ◽  
Shabeer Ahmed ◽  
Farrukh Hussain ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document