scholarly journals Psychological Time: Interval Length Judgments and Subjective Passage of Time Judgments

Author(s):  
Madalina Sucala ◽  
Bari Scheckner ◽  
Daniel David
Author(s):  
M. W. Koch ◽  
M. Ringkamp ◽  
S. Leyendecker

In this work, we optimally control the upright gait of a three-dimensional symmetric bipedal walking model with flat feet. The whole walking cycle is assumed to occur during a fixed time span while the time span for each of the cycle phases is variable and part of the optimization. The implemented flat foot model allows to distinguish forefoot and heel contact such that a half walking cycle consists of five different phases. A fixed number of discrete time nodes in combination with a variable time interval length assure that the discretized problem is differentiable even though the particular time of establishing or releasing the contact between the foot and the ground is variable. Moreover, the perfectly plastic contact model prevents penetration of the ground. The optimal control problem is solved by our structure preserving discrete mechanics and optimal control for constrained systems (DMOCC) approach where the considered cost function is physiologically motivated and the obtained results are analyzed with regard to the gait of humans walking on a horizontal and an inclined plane.


2010 ◽  
Vol 365 (1558) ◽  
pp. 3599-3609 ◽  
Author(s):  
Anne Chao ◽  
Chun-Huo Chiu ◽  
Lou Jost

We propose a parametric class of phylogenetic diversity (PD) measures that are sensitive to both species abundance and species taxonomic or phylogenetic distances. This work extends the conventional parametric species-neutral approach (based on ‘effective number of species’ or Hill numbers) to take into account species relatedness, and also generalizes the traditional phylogenetic approach (based on ‘total phylogenetic length’) to incorporate species abundances. The proposed measure quantifies ‘the mean effective number of species’ over any time interval of interest, or the ‘effective number of maximally distinct lineages’ over that time interval. The product of the measure and the interval length quantifies the ‘branch diversity’ of the phylogenetic tree during that interval. The new measures generalize and unify many existing measures and lead to a natural definition of taxonomic diversity as a special case. The replication principle (or doubling property), an important requirement for species-neutral diversity, is generalized to PD. The widely used Rao's quadratic entropy and the phylogenetic entropy do not satisfy this essential property, but a simple transformation converts each to our measures, which do satisfy the property. The proposed approach is applied to forest data for interpreting the effects of thinning.


2005 ◽  
Vol 3 (6) ◽  
pp. 87-97 ◽  
Author(s):  
Yu-Kai The ◽  
Jens Timmer

Hidden Markov models are widely used to describe single channel currents from patch-clamp experiments. The inevitable anti-aliasing filter limits the time resolution of the measurements and therefore the standard hidden Markov model is not adequate anymore. The notion of time-interval omission has been introduced where brief events are not detected. The developed, exact solutions to this problem do not take into account that the measured intervals are limited by the sampling time. In this case the dead-time that specifies the minimal detectable interval length is not defined unambiguously. We show that a wrong choice of the dead-time leads to considerably biased estimates and present the appropriate equations to describe sampled data.


2006 ◽  
Vol 18 (11) ◽  
pp. 2583-2591 ◽  
Author(s):  
Robert E. Kass ◽  
Valérie Ventura

It has been observed that spike count correlation between two simultaneously recorded neurons often increases with the length of time interval examined. Under simple assumptions that are roughly consistent with much experimental data, we show that this phenomenon may be explained as being due to excess trial-to-trial variation. The resulting formula for the correlation is able to predict the observed correlation of two neurons recorded from primary visual cortex as a function of interval length.


2007 ◽  
Vol 53 (4) ◽  
pp. 575-580 ◽  
Author(s):  
Curtis A Parvin ◽  
Sanford Robbins

Abstract Background: Although minimum regulatory standards exist for determining QC testing frequency, decisions regarding when and how to run QC samples are not standardized. Most QC testing strategies test control samples at fixed time intervals, often placing the samples in the same position on an instrument during subsequent QC events and leaving large gaps of time when control samples are never run, yet patient samples are being tested. Methods: Mathematical derivations and computer simulation were used to determine the expected waiting time between an out-of-control condition and the next scheduled QC test for various QC testing strategies that use fixed or random intervals between QC tests. Results: Scheduling QC tests at fixed intervals yields an average time between the occurrence of an out-of-control error condition and the next scheduled QC test that is equal to half of the fixed time interval. This performance was the best among the QC scheduling strategies investigated. Near-optimal performance, however, was achieved by randomly selecting time intervals between QC events centered on the desired expected interval length, a method that provides variation in QC testing times throughout the day. Conclusions: If the goal is to vary QC testing times throughout the day while maintaining the shortest expected length of time between error conditions and the next scheduled QC test, then a near-optimal QC scheduling strategy combines randomly selected time intervals centered on the desired length of time between QC events with fixed time intervals.


2001 ◽  
Vol 15 (4) ◽  
pp. 256-274 ◽  
Author(s):  
Caterina Pesce ◽  
Rainer Bösel

Abstract In the present study we explored the focusing of visuospatial attention in subjects practicing and not practicing activities with high attentional demands. Similar to the studies of Castiello and Umiltà (e. g., 1990) , our experimental procedure was a variation of Posner's (1980) basic paradigm for exploring covert orienting of visuospatial attention. In a simple RT-task, a peripheral cue of varying size was presented unilaterally or bilaterally from a central fixation point and followed by a target at different stimulus-onset-asynchronies (SOAs). The target could occur validly inside the cue or invalidly outside the cue with varying spatial relation to its boundary. Event-related brain potentials (ERPs) and reaction times (RTs) were recorded to target stimuli under the different task conditions. RT and ERP findings showed converging aspects as well as dissociations. Electrophysiological results revealed an amplitude modulation of the ERPs in the early and late Nd time interval at both anterior and posterior scalp sites, which seems to be related to the effects of peripheral informative cues as well as to the attentional expertise. Results were: (1) shorter latency effects confirm the positive-going amplitude enhancement elicited by unilateral peripheral cues and strengthen the criticism against the neutrality of spatially nonpredictive peripheral cueing of all possible target locations which is often presumed in behavioral studies. (2) Longer latency effects show that subjects with attentional expertise modulate the distribution of the attentional resources in the visual space differently than nonexperienced subjects. Skilled practice may lead to minimizing attentional costs by automatizing the use of a span of attention that is adapted to the most frequent task demands and endogenously increases the allocation of resources to cope with less usual attending conditions.


2001 ◽  
Vol 17 (1) ◽  
pp. 25-35 ◽  
Author(s):  
G. Leonard Burns ◽  
James A. Walsh ◽  
David R. Patterson ◽  
Carol S. Holte ◽  
Rita Sommers-Flanagan ◽  
...  

Summary: Rating scales are commonly used to measure the symptoms of attention deficit/hyperactivity disorder (ADHD), oppositional defiant disorder (ODD), and conduct disorder (CD). While these scales have positive psychometric properties, the scales share a potential weakness - the use of vague or subjective rating procedures to measure symptom occurrence (e. g., never, occasionally, often, and very often). Rating procedures based on frequency counts for a specific time interval (e. g., never, once, twice, once per month, once per week, once per day, more than once per day) are less subjective and provide a conceptually better assessment procedure for these symptoms. Such a frequency count procedure was used to obtain parent ratings on the ADHD, ODD, and CD symptoms in a normative (nonclinical) sample of 3,500 children and adolescents. Although the current study does not provide a direct comparison of the two types of rating procedures, the results suggest that the frequency count procedure provides a potentially more useful way to measure these symptoms. The implications of the results are noted for the construction of rating scales to measure the ADHD, ODD, and CD symptoms.


Sign in / Sign up

Export Citation Format

Share Document