A Review of the Biocontrol Programmes Against Aquatic Weeds in South Africa

2021 ◽  
Vol 29 (3) ◽  
Author(s):  
J.A. Coetzee ◽  
A. Bownes ◽  
G.D. Martin ◽  
B.E. Miller ◽  
R. Smith ◽  
...  
Keyword(s):  
2016 ◽  
Vol 9 (1) ◽  
pp. 1-40 ◽  
Author(s):  
C. N. Kurugundla ◽  
B. Mathangwane ◽  
S. Sakuringwa ◽  
G. Katorah

Aquatic ecosystems in Botswana have been under threat by the aquatic alien invasive plant species viz., salvinia Salvinia molesta Mitchell, water lettuce Pistia stratiotes L., and water hyacinth Eichhornia crassipes (Mart.) Solms-Laub. While salvinia has been termed the major threat to the Botswana wetlands, water lettuce and water hyacinth are considered to be of minor importance. This review presents the species biology, distribution, historical spread, negative impacts, control achieved right from their discovery in the country by referring to their control and management in the world. Having infested the Kwando-Linyanti-Chobe Rivers in the 1970s, salvinia was initially tried by the use of herbicides, paraquat and glyphosate, between 1972 and 1976. With the discovery of the host specific biological control weevil Cyrtobagous salviniae Calder and Sands in 1981, the weevil was introduced by Namibians on Kwando and Chobe Rivers in 1983 and by Botswana in 1986 in the Okavango Delta. While the control was slowly establishing in Kwando-Linyanti-Chobe Rivers, it became apparent that lakes and perennial swamps within and outside Moremi Game Reserve of the Okavango Delta were infested with salvinia from 1992 onwards. With continuous and sustained liberation of the weevil in the Kwando-Linyanti-Chobe Rivers and in the Okavango Delta between 1999 and 2000, salvinia control was achieved by 2003, and since then the weevil constantly keeps the weed at low levels. The success is mainly due to sustainable monitoring through the application of physical and biological control methods. However, salvinia is still threatening the Okavango Delta due to factors such as tourism activities, boat navigation fishing and transporttion by wild animals. The first occurrence of water lettuce was recorded on Kwando and Chobe Rivers in 1986. Its biocontrol weevil Neohydronomous affinis Hustache was released in the year 1987. The weevil became extinct in Selinda Canal and Zibadianja Lake on Kwando River due to dry and wet events for over 10 years and the weed had been under control biologically on Chobe River. Having surface covered the Selinda and a part of the Zibadianja in high flood and rainfall in 1999/2000 season, research was undertaken to contain water lettuce, which led to its eradication by 2005. Regular physical removal of the water lettuce prior to fruit maturity is an effective method of control or eradicating the weed in seasonal water bodies. The Limpopo Basin (shared by Botswana, South Africa, Zimbabwe and Mozambique) has become vulnerable to water hyacinth infestation. Water hyacinth infested the trans-boundary Limpopo River in 2010 sourced from Hartbeesport Dam on Crocodile River in South Africa. Botswana and South Africa have been consulting each other to implement integrated control of the weed jointly in the Limpopo River. Water hyacinth could be a continuous threat to the dams and the rivers in the Limpopo basin if its control is not taken seriously. These three species are found growing in Botswana in a range of pH between 4.5 and 10.3 and in the range of conductivities between 20 and 580 µS cm-1. Range of soluble nitrates, phosphates and potassium in the habitats of salvinia infestations were 0.02 to 1.5, 0.01 to 1.78 and 0.3 to 6.92 mg L-1 respectively. Water lettuce infestation in the seasonal Selinda Canal had a maximum of 4.7 mg L-1 nitrates, 2.8 mg L-1 phosphates and 7.9 mg L-1 potassium. Nevertheless, these three nutrients were in the range of 0.41 to 9.56 mg L-1, 0.2 to 2.9 mg L-1, and 7.7 to 11.53 mg L-1 respectively in the Limpopo River where water hyacinth infestations were observed. These nutrients were considerably high during decomposition phase of biological control of weeds. The Government of Botswana “regulates the movement and importation of boats and aquatic apparatus, to prevent the importation and spread of aquatic weeds both within and from the neighboring countries” by “Aquatic Weed (Control) Act” implemented in 1986. These measures, combined with communities, conservation groups, NGOs and public awareness campaigns, have highlighted the gravity of aquatic weeds spreading into wetlands, dams and other water bodies. In conclusion, the Government of Botswana is committed and supportive through the Department of Water Affairs in protecting the wetlands of the country efficiently and prudently.


Bothalia ◽  
2017 ◽  
Vol 47 (2) ◽  
Author(s):  
Martin P. Hill ◽  
Julie Coetzee

Background: Aquatic ecosystems in South Africa are prone to invasion by several invasive alien aquatic weeds, most notably, Eichhornia crassipes (Mart.) Solms-Laub. (Pontederiaceae) (water hyacinth); Pistia stratiotes L. (Araceae) (water lettuce); Salvinia molesta D.S. Mitch. (Salviniaceae) (salvinia); Myriophyllum aquaticum (Vell. Conc.) Verd. (parrot’s feather); and Azolla filiculoides Lam. (Azollaceae) (red water fern). Objective: We review the biological control programme on waterweeds in South Africa. Results: Our review shows significant reductions in the extent of invasions, and a return on biodiversity and socio-economic benefits through the use of this method. These studies provide justification for the control of widespread and emerging freshwater invasive alien aquatic weeds in South Africa. Conclusions: The long-term management of alien aquatic vegetation relies on the correct implementation of biological control for those species already in the country and the prevention of other species entering South Africa.


1972 ◽  
Vol 1 ◽  
pp. 27-38
Author(s):  
J. Hers

In South Africa the modern outlook towards time may be said to have started in 1948. Both the two major observatories, The Royal Observatory in Cape Town and the Union Observatory (now known as the Republic Observatory) in Johannesburg had, of course, been involved in the astronomical determination of time almost from their inception, and the Johannesburg Observatory has been responsible for the official time of South Africa since 1908. However the pendulum clocks then in use could not be relied on to provide an accuracy better than about 1/10 second, which was of the same order as that of the astronomical observations. It is doubtful if much use was made of even this limited accuracy outside the two observatories, and although there may – occasionally have been a demand for more accurate time, it was certainly not voiced.


Author(s):  
Alex Johnson ◽  
Amanda Hitchins

Abstract This article summarizes a series of trips sponsored by People to People, a professional exchange program. The trips described in this report were led by the first author of this article and include trips to South Africa, Russia, Vietnam and Cambodia, and Israel. Each of these trips included delegations of 25 to 50 speech-language pathologists and audiologists who participated in professional visits to learn of the health, education, and social conditions in each country. Additionally, opportunities to meet with communication disorders professionals, students, and persons with speech, language, or hearing disabilities were included. People to People, partnered with the American Speech-Language-Hearing Association (ASHA), provides a meaningful and interesting way to learn and travel with colleagues.


Sign in / Sign up

Export Citation Format

Share Document