Newtonian quantum gravity and the derivation of the gravitational constant G and its fluctuations

2020 ◽  
Vol 33 (4) ◽  
pp. 387-394
Author(s):  
Reiner Georg Ziefle

The theory of gravity “Newtonian quantum gravity” (NQG) is an ingeniously simple theory, because it precisely predicts so-called “general relativistic phenomena,” as, for example, that observed at the binary pulsar PSR B1913 + 16, by just applying Kepler’s second law on quantized gravitational fields. It is an irony of fate that the unsuspecting relativistic physicists still have to effort with the tensor calculations of an imaginary four-dimensional space-time. Everybody can understand that a mass that moves through space must meet more “gravitational quanta” emitted by a certain mass, if it moves faster than if it moves slower or rests against a certain mass, which must cause additional gravitational effects that must be added to the results of Newton's theory of gravity. However, today's physicists cannot recognize this because they are caught in Einstein's relativistic thinking and as general relativity can coincidentally also predict these quantum effects by a mathematically defined four-dimensional curvature of space-time. Advanced NQG is also able to derive the gravitational constant G and explains why G must fluctuate. The “string theory” tries to unify quantum physics with general relativity, but as the so-called “general relativistic” phenomena are quantum physical effects, it cannot be a realistic theory. The “energy wave theory” is lead to absurdity by the author.

2020 ◽  
Vol 33 (1) ◽  
pp. 99-113 ◽  
Author(s):  
Reiner Georg Ziefle

Newtonian Quantum Gravity (NQG) unifies quantum physics with Newton's theory of gravity and calculates the so-called “general relativistic” phenomena more precisely and in a much simpler way than General Relativity, whose complicated theoretical construct is no longer needed. Newton's theory of gravity is less accurate than Albert Einstein's theory of general relativity. Famous examples are the precise predictions of General Relativity at binary pulsars. This is the reason why relativistic physicists claim that there can be no doubt that Einstein's theory of relativity correctly describes our physical reality. With the example of the famous “Hulse-Taylor binary” (also known as PSR 1913 + 16 or PSR B1913 + 16), the author proves that the so-called “general relativistic phenomena” observed at this binary solar system can be calculated without having any knowledge on relativistic physics. According to philosophical and epistemological criteria, this should not be possible, if Einstein's theory of relativity indeed described our physical reality. Einstein obviously merely developed an alternative method to calculate these phenomena without quantum physics. The reason was that in those days quantum physics was not yet generally taken into account. It is not the first time that a lack of knowledge of the underlying physical phenomena has to be compensated by complicated mathematics. Einstein's theory of general relativity indirectly already includes additional quantum physical effects of gravitation. This is the reason why it cannot be possible to unite Einstein's theory of general relativity with quantum physics, unless one uses “mathematical tricks” that make the additional quantum physical effects disappear again in the end.


2004 ◽  
pp. 49-54
Author(s):  
I.I. Haranas

There is a new theory gravity called the dynamic theory, which is derived from thermodynamic principles in a five dimensional space, radar signals traveling times and delays are calculated for the major planets in the solar system, and compared to those of general relativity. This is done by using the usual four dimensional spherically symmetric space-time element of classical general relativistic gravity which has now been slightly modified by a negative inverse radial exponential term due to the dynamic theory of gravity potential.


Author(s):  
Biswaranjan Dikshit

Einstein’s theory of general relativity which has been experimentally proved to be true theory of gravity doesn’t need gravitational potential energy to predict trajectory of particles in space. This is because general relativity is a purely geometric theory. Objects move along the geodesics in the curved space-time. The energy-momentum tensor that warps the space-time as per Einstein’s field equations takes into account only the energy/momentum of matter and radiation. Thus, gravitational potential energy doesn’t come into picture in Einstein’s theory of gravity and its role is taken over by curvature of space-time. However, general relativistically correct expression for gravitational potential energy is required for energy conservation and some energy-based approaches in physics. Conventionally, correct form of gravitational potential energy is derived by using full mathematical formality of general relativity. In this paper, we describe an event by which we derive the same general relativistic expression for gravitational potential energy simply by using the principle of equivalence and gravitational time dilation.


2019 ◽  
Author(s):  
Vitaly Kuyukov

Many approaches to quantum gravity consider the revision of the space-time geometry and the structure of elementary particles. One of the main candidates is string theory. It is possible that this theory will be able to describe the problem of hierarchy, provided that there is an appropriate Calabi-Yau geometry. In this paper we will proceed from the traditional view on the structure of elementary particles in the usual four-dimensional space-time. The only condition is that quarks and leptons should have a common emerging structure. When a new formula for the mass of the hierarchy is obtained, this structure arises from topological quantum theory and a suitable choice of dimensional units.


Author(s):  
S. Majid

We consider Hilbert’s problem of the axioms of physics at a qualitative or conceptual level. This is more pressing than ever as we seek to understand how both general relativity and quantum theory could emerge from some deeper theory of quantum gravity, and in this regard I have previously proposed a principle of self-duality or quantum Born reciprocity as a key structure. Here, I outline some of my recent work around the idea of quantum space–time as motivated by this non-standard philosophy, including a new toy model of gravity on a space–time consisting of four points forming a square. This article is part of the theme issue ‘Hilbert’s sixth problem’.


2008 ◽  
Vol 17 (03n04) ◽  
pp. 525-531 ◽  
Author(s):  
THIBAULT DAMOUR ◽  
HERMANN NICOLAI

Recent work has revealed intriguing connections between a Belinsky–Khalatnikov–Lifshitz-type analysis of spacelike singularities in general relativity and certain infinite-dimensional Lie algebras, particularly the "maximally extended" hyperbolic Kac–Moody algebra E10. In this essay we argue that these results may lead to an entirely new understanding of the (quantum) nature of space(–time) at the Planck scale, and hence — via an effective "de-emergence" of space near the singularity — to a novel mechanism for achieving background independence in quantum gravity.


2005 ◽  
Vol 20 (32) ◽  
pp. 7485-7504 ◽  
Author(s):  
JONG-PING HSU ◽  
DANA FINE

We discuss ideas and problems regarding classical and quantum gravity, gauge theory of gravity, and space–time transformations between accelerated frames. Both Einstein's theory of gravity and Yang–Mills theory are gauge invariant. The invariance principles are at the very heart of our understanding of the physical world. This paper attempts to survey the development and to reveal problems and limitations of various formulations to gravitational and Yang–Mills fields, and to space–time transformations of accelerated frames. Gravitational force and accelerated frames are two ingredients in Einstein's thought in the period around 1907. Accelerated frames are difficult to define and are not well developed. However, one cannot claim to have a complete understanding of the physical world, if one understands flat space–time physics only from the viewpoint of the special class of inertial frames and ignores the vast class of noninertial frames. The paper highlights three aspects: (1) ideas of gravity as a Yang–Mills field, first discussed by Utiyama; (2) problems of quantum gravity, discussed by Feynman, Dyson and others; (3) space–time properties and the physics of fields and particles in accelerated frames of reference. These unfulfilled aspects of Einstein and Yang–Mills' profound thoughts present a challenge to physicists and mathematicians in the 21st century.


2014 ◽  
Vol 2014 ◽  
pp. 1-4 ◽  
Author(s):  
Sanjay Oli

We have presented cosmological models in five-dimensional Kaluza-Klein space-time with a variable gravitational constant (G) and cosmological constant (Λ). We have investigated Einstein’s field equations for five-dimensional Kaluza-Klein space-time in the presence of perfect fluid with time dependent G and Λ. A variety of solutions have been found in which G increases and Λ decreases with time t, which matches with current observation. The properties of fluid and kinematical parameters have been discussed in detail.


Sign in / Sign up

Export Citation Format

Share Document