APPLICATION OF DENDRIMER/PLASMID hBMP-2 COMPLEXES LOADED INTO β-TCP/COLLAGEN SCAFFOLD IN THE TREATMENT OF FEMORAL DEFECTS IN RATS

2014 ◽  
Vol 26 (01) ◽  
pp. 1450005 ◽  
Author(s):  
Tingwei Bao ◽  
Huiming Wang ◽  
Wentao Zhang ◽  
Xuefeng Xia ◽  
Jiabei Zhou ◽  
...  

Purpose: Plasmid loading into scaffolds to enhance sustained release of growth factors is an important focus of regenerative medicine. The aim of this study was to build gene-activated matrices (GAMs) and examine the bone augmentation properties. Methods: Generation 5 polyamidoamine dendrimers (G5 dPAMAM)/plasmid recombinant human bone morphogenetic protein-2 (rhBMP-2) complexes were immobilized into beta-tricalcium phosphate (β-TCP)/type I collagen porous scaffolds. After cultured with rat mesenchymal stem cells (rMSCs), transfection efficiencies were examined. The secretion of rhBMP-2 and alkaline phosphatase (ALP) were detected to evaluate the osteogenic properties. Scanning electron microscopy (SEM) was used to observe attachment and proliferation. Moreover, we applied these GAMs directly into freshly created segmental bone defects in rat femurs, and their osteogenic efficiencies were evaluated. Results: Released plasmid complexes were transfected into stem cells and were expressed, which caused osteogenic differentiations of rat mesenchymal stem cells (rMSCs). SEM analysis showed excellent cell attachment. Bioactivity of plasmid rhBMP-2 was maintained in vivo, and the X-ray observation, histological analysis and immunohistochemistry (IHC) of bone tissue demonstrated that the bone healing in segmental femoral defects was enhanced by implantation of GAMs. Conclusions: Such biomaterials offer therapeutic opportunities in critical-sized bone defects.

Materials ◽  
2019 ◽  
Vol 12 (14) ◽  
pp. 2268 ◽  
Author(s):  
Guilherme Caetano ◽  
Weiguang Wang ◽  
Adriana Murashima ◽  
José Roberto Passarini ◽  
Leonardo Bagne ◽  
...  

The use of porous scaffolds created by additive manufacturing is considered a viable approach for the regeneration of critical-size bone defects. This paper investigates the xenotransplantation of polycaprolactone (PCL) tissue constructs seeded with differentiated and undifferentiated human adipose-derived mesenchymal stem cells (hADSCs) to treat calvarial critical-sized defect in Wistar rats. PCL scaffolds without cells were also considered. In vitro and in vivo biological evaluations were performed to assess the feasibility of these different approaches. In the case of cell seeded scaffolds, it was possible to observe the presence of hADSCs in the rat tissue contributing directly (osteoblasts) and indirectly (stimulation by paracrine factors) to tissue formation, organization and mineralization. The presence of bone morphogenetic protein-2 (BMP-2) in the rat tissue treated with cell-seeded PCL scaffolds suggests that the paracrine factors of undifferentiated hADSC cells could stimulate BMP-2 production by surrounding cells, leading to osteogenesis. Moreover, BMP-2 acts synergistically with growth factors to induce angiogenesis, leading to higher numbers of blood vessels in the groups containing undifferentiated and differentiated hADSCs.


2021 ◽  
Vol 22 (24) ◽  
pp. 13594
Author(s):  
Luis Oliveros Anerillas ◽  
Paul J. Kingham ◽  
Mikko J. Lammi ◽  
Mikael Wiberg ◽  
Peyman Kelk

Autologous bone transplantation is the principal method for reconstruction of large bone defects. This technique has limitations, such as donor site availability, amount of bone needed and morbidity. An alternative to this technique is tissue engineering with bone marrow-derived mesenchymal stem cells (BMSCs). In this study, our aim was to elucidate the benefits of culturing BMSCs in 3D compared with the traditional 2D culture. In an initial screening, we combined BMSCs with four different biogels: unmodified type I collagen (Col I), type I collagen methacrylate (ColMa), an alginate and cellulose-based bioink (CELLINK) and a gelatin-based bioink containing xanthan gum (GelXA-bone). Col I was the best for structural integrity and maintenance of cell morphology. Osteogenic, adipogenic, and chondrogenic differentiations of the BMSCs in 2D versus 3D type I collagen gels were investigated. While the traditional pellet culture for chondrogenesis was superior to our tested 3D culture, Col I hydrogels (i.e., 3D) favored adipogenic and osteogenic differentiation. Further focus of this study on osteogenesis were conducted by comparing 2D and 3D differentiated BMSCs with Osteoimage® (stains hydroxyapatite), von Kossa (stains anionic portion of phosphates, carbonates, and other salts) and Alizarin Red (stains Ca2+ deposits). Multivariate gene analysis with various covariates showed low variability among donors, successful osteogenic differentiation, and the identification of one gene (matrix metallopeptidase 13, MMP13) significantly differentially expressed in 2D vs. 3D cultures. MMP13 protein expression was confirmed with immunohistochemistry. In conclusion, this study shows evidence for the suitability of type I collagen gels for 3D osteogenic differentiation of BMSCs, which might improve the production of tissue-engineered constructs for treatment of bone defects.


2018 ◽  
Vol 55 (4) ◽  
pp. 691-695
Author(s):  
Tudor Sorin Pop ◽  
Anca Maria Pop ◽  
Alina Dia Trambitas Miron ◽  
Klara Brinzaniuc ◽  
Simona Gurzu ◽  
...  

The use of collagen scaffolds and stem cells for obtaining a tissue-engineering complex has been an important concept in promoting repair and regeneration of the bone tissue. Such units represent important steps in the development of an ideal scaffold-cell complex that would sustain new bone apposition. The aim of our study was to perform a histologic evaluation of the healing of critical-sized bone defects, using a biologic collagen scaffold with adipose-derived mesenchymal stem cells, in comparison to negative controls created in the adjacent bone. We used 16 Wistar rats and according to the study design 2 calvarial bone defects were created in each animal, one was filled with collagen seeded with adipose-derived stem cells and the other one was considered negative control. During the following month, at weekly intervals, the animals were euthanized and the specimens from bone defects were histologically evaluated. The results showed that these scaffolds were highly biocompatible as only moderate inflammation no rejection reactions were observed. Furthermore, the first signs of osseous healing appeared after two weeks accompanied by angiogenesis. Collagen scaffolds seeded with adipose-derived mesenchymal stem cells can be considered a promising treatment option in bone regeneration of large defects.


2019 ◽  
Vol 70 (6) ◽  
pp. 1983-1987
Author(s):  
Cristian Trambitas ◽  
Anca Maria Pop ◽  
Alina Dia Trambitas Miron ◽  
Dorin Constantin Dorobantu ◽  
Flaviu Tabaran ◽  
...  

Large bone defects are a medical concern as these are often unable to heal spontaneously, based on the host bone repair mechanisms. In their treatment, bone tissue engineering techniques represent a promising approach by providing a guide for osseous regeneration. As bioactive glasses proved to have osteoconductive and osteoinductive properties, the aim of our study was to evaluate by histologic examination, the differences in the healing of critical-sized calvarial bone defects filled with bioactive glass combined with adipose-derived mesenchymal stem cells, compared to negative controls. We used 16 male Wistar rats subjected to a specific protocol based on which 2 calvarial bone defects were created in each animal, one was filled with Bon Alive S53P4 bioactive glass and adipose-derived stem cells and the other one was considered control. At intervals of one week during the following month, the animals were euthanized and the specimens from bone defects were histologically examined and compared. The results showed that this biomaterial was biocompatible and the first signs of osseous healing appeared in the third week. Bone Alive S53P4 bioactive glass could be an excellent bone substitute, reducing the need of bone grafts.


2010 ◽  
Vol 9999A ◽  
pp. NA-NA ◽  
Author(s):  
Kuo-Shu Tsai ◽  
Shou-Yen Kao ◽  
Chien-Yuan Wang ◽  
Yng-Jiin Wang ◽  
Jung-Pan Wang ◽  
...  

2013 ◽  
Vol 2013 ◽  
pp. 1-11 ◽  
Author(s):  
Hongliang He ◽  
Xiaozhen Liu ◽  
Liang Peng ◽  
Zhiliang Gao ◽  
Yun Ye ◽  
...  

Interactions between stem cells and extracellular matrix (ECM) are requisite for inducing lineage-specific differentiation and maintaining biological functions of mesenchymal stem cells by providing a composite set of chemical and structural signals. Here we investigated if cell-deposited ECM mimickedin vivoliver's stem cell microenvironment and facilitated hepatogenic maturation. Decellularization process preserved the fibrillar microstructure and a mix of matrix proteins in cell-deposited ECM, such as type I collagen, type III collagen, fibronectin, and laminin that were identical to those found in native liver. Compared with the cells on tissue culture polystyrene (TCPS), bone marrow mesenchymal stem cells (BM-MSCs) cultured on cell-deposited ECM showed a spindle-like shape, a robust proliferative capacity, and a suppressed level of intracellular reactive oxygen species, accompanied with upregulation of two superoxide dismutases. Hepatocyte-like cells differentiated from BM-MSCs on ECM were determined with a more intensive staining of glycogen storage, an elevated level of urea biosynthesis, and higher expressions of hepatocyte-specific genes in contrast to those on TCPS. These results demonstrate that cell-deposited ECM can be an effective method to facilitate hepatic maturation of BM-MSCs and promote stem-cell-based liver regenerative medicine.


2010 ◽  
Vol 19 (5) ◽  
pp. 645-656 ◽  
Author(s):  
Katrin Warstat ◽  
Diana Meckbach ◽  
Michaela Weis-Klemm ◽  
Anita Hack ◽  
Gerd Klein ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document