Type I collagen promotes proliferation and osteogenesis of human mesenchymal stem cells via activation of ERK and Akt pathways

2010 ◽  
Vol 9999A ◽  
pp. NA-NA ◽  
Author(s):  
Kuo-Shu Tsai ◽  
Shou-Yen Kao ◽  
Chien-Yuan Wang ◽  
Yng-Jiin Wang ◽  
Jung-Pan Wang ◽  
...  
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Qi Xing ◽  
Mojtaba Parvizi ◽  
Manuela Lopera Higuita ◽  
Leigh G. Griffiths

AbstractNative bovine pericardium (BP) exhibits anisotropy of its surface ECM niches, with the serous surface (i.e., parietal pericardium) containing basement membrane components (e.g., Laminin, Col IV) and the fibrous surface (i.e., mediastinal side) being composed primarily of type I collagen (Col I). Native BP surface ECM niche anisotropy is preserved in antigen removed BP (AR-BP) extracellular matrix (ECM) scaffolds. By exploiting sideness (serous or fibrous surface) of AR-BP scaffolds, this study aims to determine the mechanism by which ECM niche influences human mesenchymal stem cells (hMSCs) migration. Human mesenchymal stem cells (hMSC) seeding on serous surface promoted more rapid cell migration than fibrous surface seeding. Gene analysis revealed that expression of integrin α3 and α11 were increased in cells cultured on serous surface compared to those on the fibrous side. Monoclonal antibody blockade of α3β1 (i.e., laminin binding) inhibited early (i.e. ≤ 6 h) hMSC migration following serous seeding, while having no effect on migration of cells on the fibrous side. Blockade of α3β1 resulted in decreased expression of integrin α3 by cells on serous surface. Monoclonal antibody blockade of α11β1 (i.e., Col IV binding) inhibited serous side migration at later time points (i.e., 6–24 h). These results confirmed the role of integrin α3β1 binding to laminin in mediating early rapid hMSCs migration and α11β1 binding to Col IV in mediating later hMSCs migration on the serous side of AR-BP, which has critical implications for rate of cellular monolayer formation and use of AR-BP as blood contacting material for clinical applications.


2015 ◽  
Vol 41 (1) ◽  
pp. 45-49 ◽  
Author(s):  
Li Ning ◽  
Hans Malmström ◽  
Yan-Fang Ren

Current bone grafting materials have significant limitations for repairing maxillofacial and dentoalveolar bone deficiencies. An ideal bone tissue-engineering construct is still lacking. The purpose of the present study was first to synthesize and develop a collagen-hydroxyapatite (Col-HA) composite through controlled in situ mineralization on type I collagen fibrils with nanometer-sized apatite crystals, and then evaluate their biologic properties by culturing with mouse and human mesenchymal stem cells (MSCs). We synthesized Col-HA scaffolds with different Col:HA ratios. Mouse C3H10T1/2 MSCs and human periodontal ligament stem cells (hPDSCs) were cultured with scaffolds for cell proliferation and biocompatibility assays. We found that the porous Col-HA composites have good biocompatibility and biomimetic properties. The Col-HA composites with ratios 80:20 and 50:50 composites supported the attachments and proliferations of mouse MSCs and hPDSCs. These findings indicate that Col-HA composite complexes have strong potentials for bone tissue regeneration.


2014 ◽  
Vol 26 (01) ◽  
pp. 1450005 ◽  
Author(s):  
Tingwei Bao ◽  
Huiming Wang ◽  
Wentao Zhang ◽  
Xuefeng Xia ◽  
Jiabei Zhou ◽  
...  

Purpose: Plasmid loading into scaffolds to enhance sustained release of growth factors is an important focus of regenerative medicine. The aim of this study was to build gene-activated matrices (GAMs) and examine the bone augmentation properties. Methods: Generation 5 polyamidoamine dendrimers (G5 dPAMAM)/plasmid recombinant human bone morphogenetic protein-2 (rhBMP-2) complexes were immobilized into beta-tricalcium phosphate (β-TCP)/type I collagen porous scaffolds. After cultured with rat mesenchymal stem cells (rMSCs), transfection efficiencies were examined. The secretion of rhBMP-2 and alkaline phosphatase (ALP) were detected to evaluate the osteogenic properties. Scanning electron microscopy (SEM) was used to observe attachment and proliferation. Moreover, we applied these GAMs directly into freshly created segmental bone defects in rat femurs, and their osteogenic efficiencies were evaluated. Results: Released plasmid complexes were transfected into stem cells and were expressed, which caused osteogenic differentiations of rat mesenchymal stem cells (rMSCs). SEM analysis showed excellent cell attachment. Bioactivity of plasmid rhBMP-2 was maintained in vivo, and the X-ray observation, histological analysis and immunohistochemistry (IHC) of bone tissue demonstrated that the bone healing in segmental femoral defects was enhanced by implantation of GAMs. Conclusions: Such biomaterials offer therapeutic opportunities in critical-sized bone defects.


2007 ◽  
Vol 83A (3) ◽  
pp. 626-635 ◽  
Author(s):  
Ulrich Nöth ◽  
Lars Rackwitz ◽  
Andrea Heymer ◽  
Meike Weber ◽  
Bernd Baumann ◽  
...  

2013 ◽  
Vol 2013 ◽  
pp. 1-11 ◽  
Author(s):  
Hongliang He ◽  
Xiaozhen Liu ◽  
Liang Peng ◽  
Zhiliang Gao ◽  
Yun Ye ◽  
...  

Interactions between stem cells and extracellular matrix (ECM) are requisite for inducing lineage-specific differentiation and maintaining biological functions of mesenchymal stem cells by providing a composite set of chemical and structural signals. Here we investigated if cell-deposited ECM mimickedin vivoliver's stem cell microenvironment and facilitated hepatogenic maturation. Decellularization process preserved the fibrillar microstructure and a mix of matrix proteins in cell-deposited ECM, such as type I collagen, type III collagen, fibronectin, and laminin that were identical to those found in native liver. Compared with the cells on tissue culture polystyrene (TCPS), bone marrow mesenchymal stem cells (BM-MSCs) cultured on cell-deposited ECM showed a spindle-like shape, a robust proliferative capacity, and a suppressed level of intracellular reactive oxygen species, accompanied with upregulation of two superoxide dismutases. Hepatocyte-like cells differentiated from BM-MSCs on ECM were determined with a more intensive staining of glycogen storage, an elevated level of urea biosynthesis, and higher expressions of hepatocyte-specific genes in contrast to those on TCPS. These results demonstrate that cell-deposited ECM can be an effective method to facilitate hepatic maturation of BM-MSCs and promote stem-cell-based liver regenerative medicine.


2010 ◽  
Vol 19 (5) ◽  
pp. 645-656 ◽  
Author(s):  
Katrin Warstat ◽  
Diana Meckbach ◽  
Michaela Weis-Klemm ◽  
Anita Hack ◽  
Gerd Klein ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document