A Hybrid Fuzzy Multiple Objective Approach to Lotsizing, Pricing, and Marketing Planning Model

Author(s):  
R. Ghasemy Yaghin ◽  
S.M.T. Fatemi Ghomi

Given high variability of demands, a manufacturer has to decide about the products’ prices and lotsizing from a supplier. Due to imprecise and fuzzy nature of parameters such as unit costs and marketing function, a hybrid fuzzy multi-objective programming model including both quantitative and qualitative objectives is proposed to determine the optimal price, marketing expenditure, and lotsize. Considering pricing, marketing, and lotsizing decisions simultaneously, the model maximizes the profit, return on inventory investment (ROII) (as a financial performance criterion), and total customer satisfaction under general demand function with a time-varying pattern in fuzzy environment. After applying appropriate strategies to defuzzify the original model, the equivalent multi-objective crisp model is then transformed by a fuzzy goal programming method. A soft computing, particle swarm optimization (PSO) is applied to solve the final crisp problem. An industrial case study is provided to show the applicability and usefulness of the proposed model and solution method. Finally, concluding remarks are reported.

2021 ◽  
pp. 1-10
Author(s):  
Zhaoping Tang ◽  
Wenda Li ◽  
Shijun Yu ◽  
Jianping Sun

In the initial stage of emergency rescue for major railway emergencies, there may be insufficient emergency resources. In order to ensure that all the emergency demand points can be effectively and fairly rescued, considering the fuzzy properties of the parameters, such as the resource demand quantity, the dispatching time and the satisfaction degree, the railway emergency resources dispatching optimization model is studied, with multi- demand point, multi-depot, and multi-resource. Based on railway rescue features, it was proposed that the couple number of relief point - emergency point is the key to affect railway rescue cost and efficiency. Under the premise of the maximum satisfaction degree of quantity demanded at all emergency points, a multi-objective programming model is established by maximizing the satisfaction degree of dispatching time and the satisfaction degree of the couple number of relief point - emergency point. Combined with the ideal point method, a restrictive parameter interval method for optimal solution was designed, which can realize the quick seek of Pareto optimal solution. Furthermore, an example is given to verify the feasibility and effectiveness of the method.


2014 ◽  
Vol 538 ◽  
pp. 127-133 ◽  
Author(s):  
Zhao Ning Zhang ◽  
Zhong Zhou Hao ◽  
Zheng Gao

To alleviate the conflicts between the current flight traffic demand and the resource constraints of airspace, we need to improve the restrictions of flow allocation caused by the static air traffic flow allocation mode. The author analyzes the optimal allocation problem of dynamic adjusting flight flow and draws the conclusion that the problem should satisfy multiple targets, such as low flight delays, low flight cost and balancing the load of the route. Then consider a variety of limiting factors, such as the capacity of the route, flight planning, emergency situations, etc. Then establish multi-objective programming model of dynamic adjusting flight traffic. The objective function is determined by the flight cost, the flight delays and the value of the load balance. And the value of the load balance was first proposed according to the idea of least squares method. Then solve the model based on linear weighted technique. Finally the numerical result shows that the model can satisfy the multiple objectives and dynamic adjust the flight traffic optimally, that proves the rationality and validity of the model and the algorithm.


In this chapter, a fuzzy stochastic multi-objective programming model is presented for planning proper allocation of agricultural lands in hybrid uncertain environment so that optimal production of several seasonal crops in a planning year can be achieved. In India, demands of various seasonal crops are gradually increasing due to rapid growth of population, whereas agricultural lands are gradually decreasing due to urbanization. Therefore, it is a huge challenge to the planners to balance this situation by proper planning for the utilization of agricultural lands and resources. From that viewpoint, the methodology is developed in this chapter. To make the model more realistic, the resource parameters incorporated with the problem are considered either in the form of fuzzy numbers (FNs) or random variables having fuzzy parameters. The two main objectives of this agricultural land allocation model are considered as maximizing the production of seasonal agricultural crops and minimizing the total expenditure by utilizing total cultivable lands in a planning period. These objectives are optimized based on the constraints: land utilization, machine-hours, man-days, fertilizer requirements, water supply, etc. As the parameters associated with the constraints are imprecise and uncertain in nature, the constraints are represented using either FN or fuzzy random variables (FRVs). The reasons behind the consideration of fuzzy constraints or fuzzy chance constraints (i.e., the reason for considering the parameters associated with the constraints as FNs or FRVs in the model) are clarified in detail. As a study region, the District Nadia, West Bengal, India is taken into account for allocation of land. To illustrate the potential use of the approach, the model solutions are compared with the existing land allocation of the district.


2020 ◽  
Vol 19 (03) ◽  
pp. 567-587
Author(s):  
Seyedeh Sanaz Mirkhorsandi ◽  
Seyed Hamid Reza Pasandideh

One of the classical models for inventory control is economic production quantity (EPQ), which is widely used in industry. In this paper, an EPQ model with partial shortage is developed by considering the real world conditions, and costs related to the backorder demand are taken as fixed and time-dependent. In the proposed model, determination of the inventory cycle length, the length of positive inventory cycle and backordered demand rate are considered in shortage period. The aim of the presented research is to minimize the total inventory costs and the space required for storage products so that the stochastic and classic constraints including holding costs, lost sales, backorder, budget, total number of productions and average shortage times should be satisfied while optimizing the multi-objective problem. Presented model is a bi-objective nonlinear programming model. Then, to solve the proposed model, three multi-objective decision-making methods including Lp-metric, goal programming and goal attainment are used. Besides, numerical examples are executed in small, medium and large scales by use of GAMS software, and the performance of the methods is compared in terms of objective functions and required CPU time. Finally, sensitivity analysis is done to determine the effect of change in the main parameters of the model on the objective function value.


2020 ◽  
Vol 18 (6) ◽  
pp. 1997-2016
Author(s):  
Mohammad Khalilzadeh ◽  
Rose Balafshan ◽  
Ashkan Hafezalkotob

Purpose The purpose of this study is to provide a comprehensive framework for analyzing risk factors in oil and gas projects. Design/methodology/approach This paper consists of several sections. In the first section, 19 common potential risks in the projects of Pars Oil and Gas Company were finalized in six groups using the Lawshe validation method. These factors were identified through previous literature review and interviews with experts. Then, using the “best-worst multi-criteria decision-making” method, the study measured the weights associated with the performance evaluation indicators of each risk. Consequently, failure mode and effects analysis (FMEA) and the grey relational analysis (GRA)-VIKOR mixed method were used to rank and determine the critical risks. Finally, to assign response strategies to each critical risk, a zero-one multi-objective mathematical programming model was proposed and developed Epsilon-constraint method was used to solve it. Findings Given the typical constraints of projects which are time, cost and quality, of the projects that companies are often faced with, this study presents the identified risks of oil and gas projects to the managers of the oil and gas company in accordance with the priority given in the present research and the response to each risk is also suggested to be used by managers based on their organizational circumstances. Originality/value This study aims at qualitative management of cost risks of oil and gas projects (case study of Pars Oil and Gas Company) by combining FMEA, best worst and GRA-VIKOR methods under fuzzy environment and Epsilon constraints. According to studies carried out in previous studies, the simultaneous management of quantitative and qualitative cost of risk of oil and gas projects in Iran has not been carried out and the combination of these methods has also been innovated.


Mathematics ◽  
2020 ◽  
Vol 8 (9) ◽  
pp. 1621
Author(s):  
Irfan Ali ◽  
Armin Fügenschuh ◽  
Srikant Gupta ◽  
Umar Muhammad Modibbo

Vendor selection is an established problem in supply chain management. It is regarded as a strategic resource by manufacturers, which must be managed efficiently. Any inappropriate selection of the vendors may lead to severe issues in the supply chain network. Hence, the desire to develop a model that minimizes the combination of transportation, deliveries, and ordering costs under uncertainty situation. In this paper, a multi-objective vendor selection problem under fuzzy environment is solved using a fuzzy goal programming approach. The vendor selection problem was modeled as a multi-objective problem, including three primary objectives of minimizing the transportation cost; the late deliveries; and the net ordering cost subject to constraints related to aggregate demand; vendor capacity; budget allocation; purchasing value; vendors’ quota; and quantity rejected. The proposed model input parameters are considered to be LR fuzzy numbers. The effectiveness of the model is illustrated with simulated data using R statistical package based on a real-life case study which was analyzed using LINGO 16.0 optimization software. The decision on the vendor’s quota allocation and selection under different degree of vagueness in the information was provided. The proposed model can address realistic vendor selection problem in the fuzzy environment and can serve as a useful tool for multi-criteria decision-making in supply chain management.


Sign in / Sign up

Export Citation Format

Share Document