Algorithms and Principles for Intelligent Design of Flapping Wing Micro Aerial Vehicles

Author(s):  
Ajay Bangalore Harish ◽  
Dineshkumar Harursampath

Almost all Micro Aerial Vehicles (MAVs) designed so far facilitate the flapping motion of their wings by means of a mounted actuating mechanism, driven, for example, by a piezoelectric crystal. The developments over the past decade or so in smart material technologies like the invention of Piezoelectric Fiber Reinforced Composite (PFRC) materials and innovative manufacturing techniques to reduce cost have resulted in favorable materials for dynamic actuating applications. Thus, the concept of actively deformable wings to produce combined flapping and feathering actions is evolving as an attractive enabler for design of future MAVs. A smart material like PFRC can both sense and actuate in a collocated fashion, thus building an additional level of computational intelligence into the MAV itself. Such a promising opportunity indicates an urgent need for reliable design tools to accelerate development of MAVs. In this work, the authors propose a modular design tool specifically for design of self-actuating flapping wing MAVs.

Author(s):  
Naeem Haider ◽  
Aamer Shahzad ◽  
Muhammad Nafees Mumtaz Qadri ◽  
Syed Irtiza Ali Shah

Micro aerial vehicles using flapping wings are under investigation, as an alternative to fixed-wing and rotary-wing micro aerial vehicles. Such flapping-wing vehicles promise key potential advantages of high thrust, agility, and maneuverability, and have a wide range of applications. These applications include both military and commercial domains such as communication relay, search and rescue, visual reconnaissance, and field search. With the advancement in the computational sciences, developments in flapping-wing micro aerial vehicles have progressed exponentially. Such developments require a careful aerodynamic and aeroelastic design of the flapping wing. Therefore, aerodynamic tools are required to study such designs and configurations. In this paper, the role of several parameters is investigated, including the types of flapping wings, the effect of the kinematics and wing geometry (shape, configuration, and structural flexibility) on performance variables such as lift, drag, thrust, and efficiency in various modes of flight. Kinematic variables have a significant effect on the performance of the flapping wing. For instance, a high flap amplitude and pitch rotation, which supports the generation of the strong leading-edge vortex, generates higher thrust. Likewise, wing shape, configuration, and structural flexibility are shown to have a large impact on the performance of the flapping wing. The wing with optimum flexibility maximizes thrust where highly flexible wings lead to performance degradation due to change in the effective angle of attack. This study shows that the development of the flexible flapping wing with performance capabilities similar to those of natural fliers has not yet been achieved. Finally, opportunities for additional research in this field are recommended.


2020 ◽  
Vol 43 (12) ◽  
pp. 2218-2236
Author(s):  
Taylor S. Clawson ◽  
Silvia Ferrari ◽  
E. Farrell Helbling ◽  
Robert J. Wood ◽  
Bo Fu ◽  
...  

2008 ◽  
Vol 147 (2) ◽  
pp. 607-612 ◽  
Author(s):  
Hsien-Chun Chung ◽  
K. Lal Kummari ◽  
S.J. Croucher ◽  
N.J. Lawson ◽  
S. Guo ◽  
...  

Author(s):  
Pierangelo Masarati ◽  
Marco Morandini ◽  
Giuseppe Quaranta ◽  
Dominic Chandar ◽  
Beatrice Roget ◽  
...  

2018 ◽  
Vol 21 (4) ◽  
pp. 73-83
Author(s):  
A. V. Bykov ◽  
S. G. Parafes ◽  
V. I. Smyslov

Designing a modern flight vehicle is associated with the need to solve many scientific and technical problems. These tasks include the prevention of insecure self-oscillations in flight, taking into account the elasticity of the structure. These problems relate to dynamic aeroelasticity, a science that examines the interaction of an elastic structure (at its oscillation) with an air flow. Maneuverable unmanned aerial vehicles (UAVs) are considered. Since UAVs are essentially not used without an automatic control system (ACS), its presence must be taken into account when considering the vibrations of an elastic structure in flight. The influence of the elasticity of UAV design on the operation of ACS in flight is manifested in the possibility of self-oscillations in the loop "elastic UAV – ACS". Self-oscillations lead to disruption of normal operation of the onboard equipment or its failure. The complexity of the problem requires its consideration at almost all stages of UAV’s development, including the creation of a prototype and testing. The computational and experimental studies of the characteristics of elastic oscillations in the UAV flight of the cross-shaped scheme are considered. The features of these UAVs (options with a modular design, the nonlinearity of the airframe, rudders, ACS, and others) due to a significant amount of testing that is the basis for the calculations. Electric actuators have a small continuous operation time, and resource use, there are gearboxes with a large gear ratio and backlashes. This determines the dependence of the rotation rigidity of the rudders on the amplitude and frequency, as well as a significant increase in the total moments of inertia. The technique of bench experiment with obtaining data to assess the boundaries of the flutter and the boundaries of the stability of the loop "elastic UAV – ACS" is given. The questions of improvement of the stabilization system of UAV required for the study of its stability at frequencies of elastic oscillations are considered, as well as the evaluation of the limiting cycles of self-oscillations is given.


2021 ◽  
Vol 4 (11) ◽  
pp. 845-852
Author(s):  
Takashi Ozaki ◽  
Norikazu Ohta ◽  
Tomohiko Jimbo ◽  
Kanae Hamaguchi

AbstractInsect-scale aerial vehicles are useful tools for communication, environmental sensing and surveying confined spaces. However, the lack of lightweight high-power-density batteries has limited the untethered flight durations of these micro aerial vehicles. Wireless power transmission using radiofrequency electromagnetic waves could potentially offer transmissivity through obstacles, wave-targeting/focusing capabilities and non-mechanical steering of the vehicles via phased-array antennas. But the use of radiofrequency power transmission has so far been limited to larger vehicles. Here we show that a wireless radiofrequency power supply can be used to drive an insect-scale flapping-wing aerial vehicle. We use a sub-gram radiofrequency power receiver with a power-to-weight density of 4,900 W kg–1, which is five times higher than that of off-the-shelf lithium polymer batteries of similar mass. With this system, we demonstrate the untethered take off of the flapping-wing micro aerial vehicle. Our RF-powered aircraft has a mass of 1.8 g and is more than 25 times lighter than previous radiofrequency-powered micro aerial vehicles.


2019 ◽  
Vol 14 (2) ◽  
pp. 026004 ◽  
Author(s):  
Shiba Biswal ◽  
Marc Mignolet ◽  
Armando A Rodriguez

Sign in / Sign up

Export Citation Format

Share Document