Using Line Cameras for Monitoring and Surveillance Sensor Networks

2013 ◽  
pp. 1032-1050
Author(s):  
Jiang Yu Zheng

The innovative combination of wireless sensor network (WSN) technology with visual monitoring and surveillance technology in computer vision has been emerging as an important new paradigm. This emerging technology will play a crucial role in visual monitoring and surveillance for automatic object detection and tracking in applications such as real-time traffic monitoring and control, vehicle parking control, intrusion detection, security surveillance, military battlefield monitoring, and so on. Compared to traditional WSNs with scalar sensing data, the development of WVSNs presents much greater challenges in terms of node’s computation power, storage, wireless bandwidth capacity and energy conservation due to the processing and transmission of the huge amount of two-dimensional (2D) image data. We introduce the use of linear CCD sensors for wireless sensor network here. It reads temporal data from a CCD array continuously and stores them to form a 2D image profile. Compared to most of the sensors in the current sensor networks that output temporal signals, it delivers more information such as color, shape, and event of a flowing scene. On the other hand, it abstracts passing objects in the profile without heavy computation and transmits much less data than a video from normal cameras. This paper focus on several unsolved issues of line sensors in capturing targets in the 3D space such as sensor setting, shape analysis, robust object extraction, and real time background adapting to ensure long-term sensing and visual data collection via networks. All the developed algorithms are executed in constant complexity for reducing the sensor and network burden. A sustainable visual sensor network can thus be established in a large area to monitor passing objects and people for surveillance, traffic assessment, invasion alarming, etc.

Author(s):  
Jiang Yu Zheng

The innovative combination of wireless sensor network (WSN) technology with visual monitoring and surveillance technology in computer vision has been emerging as an important new paradigm. This emerging technology will play a crucial role in visual monitoring and surveillance for automatic object detection and tracking in applications such as real-time traffic monitoring and control, vehicle parking control, intrusion detection, security surveillance, military battlefield monitoring, and so on. Compared to traditional WSNs with scalar sensing data, the development of WVSNs presents much greater challenges in terms of node’s computation power, storage, wireless bandwidth capacity and energy conservation due to the processing and transmission of the huge amount of two-dimensional (2D) image data. We introduce the use of linear CCD sensors for wireless sensor network here. It reads temporal data from a CCD array continuously and stores them to form a 2D image profile. Compared to most of the sensors in the current sensor networks that output temporal signals, it delivers more information such as color, shape, and event of a flowing scene. On the other hand, it abstracts passing objects in the profile without heavy computation and transmits much less data than a video from normal cameras. This paper focus on several unsolved issues of line sensors in capturing targets in the 3D space such as sensor setting, shape analysis, robust object extraction, and real time background adapting to ensure long-term sensing and visual data collection via networks. All the developed algorithms are executed in constant complexity for reducing the sensor and network burden. A sustainable visual sensor network can thus be established in a large area to monitor passing objects and people for surveillance, traffic assessment, invasion alarming, etc.


2013 ◽  
Vol 431 ◽  
pp. 318-324 ◽  
Author(s):  
Chau Chung Song ◽  
Chen Fu Feng ◽  
Chieh Yao Lin ◽  
Bo Hao Yan

In this paper, an application-layer networking system is analyzed and implemented for wireless sensor network. We focus on studying the binding connection methods on the applicationlayer network to implement the universal plug in/out capability on ZigBee networks. The proposed application-layer network provides a cluster-based and plug-and-play communication functions to dynamically and automatically connect in/out the ZigBee nodes on wireless sensor networks. Moreover, the network planning and connection mechanism is achieved by the Binding link objects of ZigBee application-layer functions. By means of Binding connection method, ZigBee nodes in sensor network can obtain the real-time messages and valid information each other. In this study, the various parameters setting and system firmware program are designed to analyze and evaluate the binding methods and data packets of application-layer communication for ZigBee network. Finally, the profile cluster IDs of application-layer network are applied to build up the specific ZigBee sensor systems with Cluster In/Out functions.


Author(s):  
Jitendra Bahadur Singh ◽  
R. C. Tripathi

The main objective to use wireless sensor network (WSN) is to collect data across various nodes and send the collected data to sink for processing. This is typically the scenario in any real-time application of WSN. In this paper, the authors review various existing methods in data aggregation, list out the research challenges faced by the researchers and propose solutions for each method.


2020 ◽  
Author(s):  
Lakshmi Narayana Thalluri ◽  
Jitendra Prasad Ayodhya ◽  
Yuva Raju Chava ◽  
Bhimeswara Anjaneya Prasad Tati

2018 ◽  
Vol 14 (01) ◽  
pp. 4
Author(s):  
Wang Weidong

To improve the efficiency of the remote monitoring system for logistics transportation, we proposed a remote monitoring system based on wireless sensor network and GPRS communication. The system can collect information from the wireless sensor network and transmit the information to the ZigBee interpreter. The monitoring system mainly includes the following parts: Car terminal, GPRS transmission network and monitoring center. Car terminal mainly consists by the Zigbee microcontroller and peripherals, wireless sensor nodes, RFID reader, GPRS wireless communication module composed of a micro-wireless monitoring network. The information collected by the sensor communicates through the GPRS and the monitoring center on the network coordinator, sends the collected information to the monitoring center, and the monitoring center realizes the information of the logistics vehicle in real time. The system has high applicability, meets the design requirements in the real-time acquisition and information transmission of the information of the logistics transport vehicles and goods, and realizes the function of remote monitoring.


2014 ◽  
Vol 513-517 ◽  
pp. 1915-1918
Author(s):  
Heng Wang ◽  
Bi Geng Zheng

As one of the freshest technologies nowadays, the development of Internet of Things is attracting more and more concerns. Internet of Things is able to connect all the items to Internet via information technology such as RFID and Wireless Sensor Network, in order to realize intelligent identification and management. It is supposed in Internet of Things environments, satisfactory services can be provided through any devices or any networks, whenever it is demanded. It makes that not only PC device but also other small devices with intelligence can be connected to the same network. As a result, It is much more convenient for people to obtain real-time information and then to take corresponding actions.


2018 ◽  
Vol 7 (2.26) ◽  
pp. 25
Author(s):  
E Ramya ◽  
R Gobinath

Data mining plays an important role in analysis of data in modern sensor networks. A sensor network is greatly constrained by the various challenges facing a modern Wireless Sensor Network. This survey paper focuses on basic idea about the algorithms and measurements taken by the Researchers in the area of Wireless Sensor Network with Health Care. This survey also catego-ries various constraints in Wireless Body Area Sensor Networks data and finds the best suitable techniques for analysing the Sensor Data. Due to resource constraints and dynamic topology, the quality of service is facing a challenging issue in Wireless Sensor Networks. In this paper, we review the quality of service parameters with respect to protocols, algorithms and Simulations. 


Sign in / Sign up

Export Citation Format

Share Document