Dipole Moment as a Possible Diagnostic Descriptor of the Conformational Isomerism of the Ammonia Molecule

2014 ◽  
pp. 1432-1447
Author(s):  
Dulal C. Ghosh ◽  
Sandip Kumar Rajak

In this chapter, Ghosh and Rajak have made a detailed quantum mechanical study of the variation of the dipole moment of ammonia as a function of its conformations evolving during the process of its umbrella inversion by invoking their method of dipole correlation of electronic structure as basis. Ghosh et al discover a surprising result that the variation of dipole moment mimics the total energy curve as a function of reaction coordinates revealing the fact that the dipole moment is one possible diagnostic descriptor of the conformational isomerism of molecules containing lone pair electrons. The dipole is calculated and partitioned into bond and lone pair components for a large number of conformations between the equilibrium shape and the transition state of inversion and the results are interpreted and correlated in terms of the localized molecular orbitals, LMOs generated from the canonical molecular orbitals, CMO’s of each conformation. Anderson, from the concept of space time symmetry, postulated that ammonia has zero dipole moment. Present study reveals that Anderson’s correlation relied upon the bond moment only while the major component of dipole of ammonia originates from the lone pair of nitrogen.

Author(s):  
Dulal C. Ghosh ◽  
Sandip Kumar Rajak

In this report, Ghosh and Rajak have made a detailed quantum mechanical study of the variation of the dipole moment of ammonia as a function of its conformations evolving during the process of its umbrella inversion by invoking their method of dipole correlation of electronic structure as basis. Ghosh et al discover a surprising result that the variation of dipole moment mimics the total energy curve as a function of reaction coordinates revealing the fact that the dipole moment is one possible diagnostic descriptor of the conformational isomerism of molecules containing lone pair electrons. The dipole is calculated and partitioned into bond and lone pair components for a large number of conformations between the equilibrium shape and the transition state of inversion and the results are interpreted and correlated in terms of the localized molecular orbitals, LMOs generated from the canonical molecular orbitals, CMO’s of each conformation. Anderson, from the concept of space time symmetry, postulated that ammonia has zero dipole moment. Present study reveals that Anderson’s correlation relied upon the bond moment only while the major component of dipole of ammonia originates from the lone pair of nitrogen.


1972 ◽  
Vol 50 (8) ◽  
pp. 1149-1156 ◽  
Author(s):  
Paul Buckley ◽  
Mireille Brochu

The minimum energy conformation of 2-methoxyethanol (CH3OCH2CH2OH) has been determined from an analysis of its microwave spectrum. The rotational constants of the normal species are: A = 12982.35, B = 2742.48, and C = 2468.10 MHz; the dipole moment components are μa = 2.03, μb = 1.15, [Formula: see text] and μ = 2.36 ± 0.03 D. For the CH3OCH2CH2OD species: A = 12385.71, B = 2724.74, and C = 2431.42 MHz. The conformation consistent with this data is gauche about each of the C—C, C—O(H) and C—O(ether) bonds, having dihedral angles of 57 ± 3°, 45 ± 5°, and 8 ± 3°, respectively. This distorted conformation is one in which the hydroxyl hydrogen atom is approximately aligned with the nearest sp3 lone pair electrons of the ether oxygen atom. Transitions in three excited torsional states have also been observed but no other rotational isomer was detected.


Some of the theoretical difficulties in the method of ionic-covalent resonance are discussed. They include our ignorance of the fundamental energies, and also of the orbitals used. If these are hybrids, as usually occurs, considerable care is required in using the conventional theory because: (1) the atomic radius, and (2) the effective electronegativity of a hybrid depend on the degree of mixing of the basic atomic orbitals. In polyatomic molecules the lone-pair electrons play a substantial part in determining the total dipole moment, and there are further difficulties associated with (1) independence, (2) partial delocalization, and (3) possible 'bent’ character of the bonds. As a result many bonds (e.g. CH, NH, OH) are intrinsically much less ionic than is usually supposed. In addition the dipole moment of a molecule does not depend in any simple way upon the formal charges associated with the atoms; nor does it provide a completely satisfactory basis for assigning individual bond moments. The paper concludes with an outline of some possible improvements which merit further research.


1982 ◽  
Vol 47 (8) ◽  
pp. 2180-2189 ◽  
Author(s):  
Jiří Sedláček

CNDO/2 calculations have been made for simple models of the adsorption of (CH3)2CHZ molecules (Z = Cl, OH, NH2, and SH) on the surface of polar catalysts. The results of these calculations and their interpretation by the method of configuration analysis in terms of uniformly localized molecular orbitals made it possible to explain satisfactorily a series of experimental facts. The mechanism and stereoselectivity of the reaction as well as reactivity trends for the series of the molecules studied are discussed.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Samuel Tetteh ◽  
Albert Ofori

Abstract The M–Ccarbene bond in metal (M) complexes involving the imidazol-2-ylidene (Im) ligand has largely been described using the σ-donor only model with donation of σ electrons from the sp-hybridized orbital of the carbene carbon into vacant orbitals on the metal centre. Analyses of the M–Ccarbene bond in a series of group IA, IIA and IIIA main group metal complexes show that the M-Im interactions are mostly electrostatic with the M–Ccarbene bond distances greater than the sum of the respective covalent radii. Estimation of the binding energies of a series of metal hydride/fluoride/chloride imidazol-2-ylidene complexes revealed that the stability of the M–Ccarbene bond in these complexes is not always commensurate with the σ-only electrostatic model. Further natural bond orbital (NBO) analyses at the DFT/B3LYP level of theory revealed substantial covalency in the M–Ccarbene bond with minor delocalization of electron density from the lone pair electrons on the halide ligands into antibonding molecular orbitals on the Im ligand. Calculation of the thermodynamic stability of the M–Ccarbene bond showed that these interactions are mostly endothermic in the gas phase with reduced entropies giving an overall ΔG > 0.


2021 ◽  
Vol 2 (1) ◽  
Author(s):  
Nam-Kwang Cho ◽  
Hyun-Jae Na ◽  
Jeeyoung Yoo ◽  
Youn Sang Kim

AbstractBlack-colored (α, γ-phase) CsPbI3 perovskites have a small bandgap and excellent absorption properties in the visible light regime, making them attractive for solar cells. However, their long-term stability in ambient conditions is limited. Here, we demonstrate a strategy to improve structural and electrical long-term stability in γ-CsPbI3 by the use of an ultraviolet-curable polyethylene glycol dimethacrylate (PEGDMA) polymer network. Oxygen lone pair electrons from the PEGDMA are found to capture Cs+ and Pb2+ cations, improving crystal growth of γ-CsPbI3 around PEGDMA. In addition, the PEGDMA polymer network strongly contributes to maintaining the black phase of γ-CsPbI3 for more than 35 days in air, and an optimized perovskite film retained ~90% of its initial electrical properties under red, green, and blue light irradiation.


2002 ◽  
Vol 09 (01) ◽  
pp. 153-158 ◽  
Author(s):  
WEIDONG ZHOU ◽  
D. P. SECCOMBE ◽  
R. Y. L. CHIM ◽  
R. P. TUCKETT

Threshold photoelectron–photoion coincidence (TPEPICO) spectroscopy has been used to investigate the decay dynamics of the valence electronic states of the parent cation of several hydrofluorocarbons (HFC), based on fluorine-substituted ethane, in the energy range 11–25 eV. We present data for CF 3– CHF 2, CF 3– CH 2 F , CF 3– CH 3 and CHF 2– CH 3. The threshold photoelectron spectra (TPES) of these molecules show a common feature of a broad, relatively weak ground state, associated with electron removal from the highest-occupied molecular orbital (HOMO) having mainly C–C σ-bonding character. Adiabatic and vertical ionisation energies for the HOMO of the four HFCs are presented, together with corresponding values from ab initio calculations. For those lower-energy molecular orbitals associated with non-bonding fluorine 2pπ lone pair electrons, these electronic states of the HFC cation decay impulsively by C–F bond fission with considerable release of translational kinetic energy. Appearance energies are presented for formation of the daughter cation formed by such a process (e.g. CF 3– CHF +), together with ab initio energies of the corresponding dissociation channel (e.g. CF 3– CHF + + F ). Values for the translational kinetic energy released are compared with the predictions of a pure-impulsive model.


Sign in / Sign up

Export Citation Format

Share Document