lone pair orbital
Recently Published Documents


TOTAL DOCUMENTS

19
(FIVE YEARS 0)

H-INDEX

8
(FIVE YEARS 0)

2014 ◽  
Vol 6 (2) ◽  
pp. 149-154
Author(s):  
Thi Ai Nhung Nguyen

Quantum chemical calculations at BP86/TZVPP//BP86/SVP have been carried out for the N-heterocylic carbene and analogues complexes (tetrylene) [(CO)4W-NHE] (W4-NHE) with E = C – Pb. The tetrylene complexes W4-NHE possess end-on-bonded NHE ligands (E = C, Si), while for E = Ge and Sn, they possess slightly side-on-bonded ligands. The strongest side-on-bonded ligand when E = Pb has a bending angle of 102.9°. The trend of the bond dissociations energies (BDEs) for the W-E bond is W4-NHC > W4-NHSi > W4-NHGe > W4-NHSn > W4-NHPb. Analysis of the bonding situation suggests that the NHE ligands in W4-NHE are strong s-donors and weak p-donors. This is because the tetrylenes have only one lone-pair orbital available for donation. The polarization of the W-E bond and the hybridization at atom E explain the trend in the bond strength of the tetrylene complexes W4-NHE. The W-E bonds of the heavier systems W4-NHE are strongly polarized toward atom E giving rise to rather weak electrostatic attraction with the tungsten atom which is the main source for the decreasing trend of the bond energies. The theoretical calculations suggest that transition-metal complexes tetrylenes [(CO)4W-{NHE}] (E = C – Pb) should be synthetically accessible compounds with tetrylenes NHE act as two-electron-donor ligands in complexes. Phân tích cấu trúc và bản chất liên kết hóa học của hợp chất với kim loại chuyển tiếp chứa phối tử N-heterocyclic carbene và các đồng đẳng (tetrylene) [(CO)4W–NHE] (W4-NHE) với E = C – Pb sử dụng tính toán hóa lượng tử ở mức BP86/TZVPP//BP86/SVP. Cấu trúc của phức W4-NHE cho thấy các phối tử NHE với E = C, Si tạo với phân tử W(CO)4 một góc thẳng = 180,0°, trong khi đó các phức W4-NHE thì phối tử NHE với E = Ge – Pb tạo liên kết với nhóm W(CO)4 một góc cong α < 180,0° và góc cong càng trở nên nhọn hơn khi E = Pb ( = 102.9°). Năng lượng phân ly liên kết của liên kết W-E giảm dần: W4-NHC > W4-NHSi > W4-NHGe > W4-NHSn > W4-NHPb. Tính toán hóa lượng tử trong phức [(CO)4W-{NHE}] (E = C – Pb) cho thấy phối tử tetrylene là chất cho electron. Điều này có thể do phối tử tetrylene chỉ giữ lại một cặp electron tại nguyên tử E để đóng vai trò là chất cho điện tử. Độ bền liên kết của phức W4-NHE được giải thích nhờ vào độ phân cực của liên kết W-E và sự lai hóa của nguyên tử trung tâm E. Nguyên nhân chính làm giảm dần năng lượng liên kết là do liên kết W-E của các phức nặng hơn W4-NHE bị phân cực mạnh về phía nguyên tử E dẫn đến lực hút tĩnh điện với nguyên tử W yếu dần. Hệ phức nghiên cứu được coi là hợp chất điển hình cho các nghiên cứu thực nghiệm.


2012 ◽  
Vol 11 (05) ◽  
pp. 1149-1164 ◽  
Author(s):  
X. L. LEI ◽  
B. C. PAN

The low-lying candidates of hydrated divalent lead ion clusters [ Pb(H2O) n]2+ with up to n = 17 have been extensively studied by using density functional theory (DFT) at B3LYP level. The optimized structures show that for n = 5–13 the lowest-energy structures prefer tetracoordinate with hemi-directed geometries, while the best candidates with n = 14–17 are hexacoordinate with holo-directed geometries, which is just consistent with the experimental observation. Furthermore, the origin of hemi-directed and holo-directed geometries has been revealed. It is found that in the hemi-directed geometries, the lone pair orbital has p character and fewer electrons are transferred from the water molecules to the Pb2+ ion. Contrarily, in the holo-directed geometries, the lone pair orbital has little or no p character and more electrons are transferred to the Pb2+ ion. On the other hand, the proton transfer reactions of the [ Pb(H2O) n]2+(n = 2, 4, 8) complexes have been examined, from which the predicted products of these complexes are in good agreement with the experimental observation.


2008 ◽  
Vol 6 (3) ◽  
pp. 400-403 ◽  
Author(s):  
Hafid Anane ◽  
Soufiane Houssame ◽  
Abdelali Guerraze ◽  
Abdeladim Guermoune ◽  
Abderrahim Boutalib ◽  
...  

AbstractThe complexation energies of H3BNHnCl3−n (n= 3-0) complexes and the proton affinities of NHnCl3−n compounds have been computed at the G2(MP2) level of theory. G2(MP2) results show that the successive chlorine substitution on the ammonia decreases both the basicity of the NHnCl3−n ligands and the stability of H3BNHnCl3−n complexes. The findings are interpreted in terms of the rehybridisation of the nitrogen lone-pair orbital. The NBO partitioning scheme shows that the variation of the N-H and N-Cl bond lengths, upon complexation, is due to variation of “s” character in these bonds.


2008 ◽  
Vol 457 (1-3) ◽  
pp. 45-48 ◽  
Author(s):  
Zhongjun Li ◽  
Xiangjun Chen ◽  
Xu Shan ◽  
Xinxia Xue ◽  
Tao Liu ◽  
...  

2006 ◽  
Vol 110 (32) ◽  
pp. 9887-9899 ◽  
Author(s):  
Joseph E. Norton ◽  
Alejandro L. Briseno ◽  
Fred Wudl ◽  
K. N. Houk

1994 ◽  
Vol 9 (2) ◽  
pp. 383-395 ◽  
Author(s):  
S.P. Mehandru ◽  
Alfred B. Anderson

We present results of atom superposition and electron delocalization molecular orbital (ASED-MO) calculations of interactions of interstitial H with substitutional B and N in diamond. Nearest-neighbor and next-nearest-neighbor C atoms were relaxed in geometry depending on the cluster size, XC34H36 or XC70H60, respectively, where X = B or N and the H atoms saturate the surface dangling radical orbitals of the models. A small Jahn-Teller distortion occurs for interstitial B, a shallow acceptor which, in the B− state, sits in a tetrahedral lattice site. For interstitial N distortions are large, with a long C-N distance which stabilizes a ŝ∗ orbital that would otherwise be in the conduction band. This orbital has one electron in it and has its greatest amplitude on C; the bonding counterpart has its greatest amplitude on N and is similar to the N lone-pair orbital in amines. The calculations indicate that N is a deep donor and N+ relaxes to the tetrahedral lattice site. Interstitial H is a mid-band-gap donor and is possibly also an acceptor with a high 1.9 eV calculated activation energy barrier to migration. Interstitial H+ is expected to be very mobile, with a migration barrier of 0.1 eV. H− is predicted to be relatively immobile with an activation barrier for migration of 2.5 eV. The mobility of bond-inserted H around B in BH pairs should be high, with a calculated activation energy of 0.13 eV, but for N the comparable process has an activation energy of 2.50 eV. In NH pairs the interstitial H has formed a bond with the radical orbital on the C, so donation would be from the lone-pair orbital on N, which lies deep in the band gap; hence, the donor property is passivated.


1992 ◽  
Vol 8 (06) ◽  
pp. 809-813
Author(s):  
Wang Dian-Xun ◽  
◽  
Wang Dong ◽  
Zhao Heng-Qi ◽  
Tang Qing ◽  
...  

1984 ◽  
Vol 15 (21) ◽  
Author(s):  
J. A. TOSSELL ◽  
S. M. LEDERMAN ◽  
J. H. MOORE ◽  
M. A. COPLAN ◽  
D. J. CHORNAY

1984 ◽  
Vol 106 (4) ◽  
pp. 976-979 ◽  
Author(s):  
J. A. Tossell ◽  
S. M. Lederman ◽  
J. H. Moore ◽  
M. A. Coplan ◽  
D. J. Chornay

Sign in / Sign up

Export Citation Format

Share Document