High Performance and Grid Computing Developments and Applications in Condensed Matter Physics

Author(s):  
Aleksandar Belić

This chapter introduces applications of High Performance Computing (HPC), Grid computing, and development of electronic infrastructures in Serbia, in the South Eastern Europe region, and in Europe as a whole. Grid computing represents one of the key enablers of scientific progress in many areas of research. Main HPC and Grid infrastructures, initiatives, projects and programs in Europe, Partnership for Advanced Computing in Europe (PRACE) and European Grid Initiative (EGI) associations, as well as Academic and Educational Grid Initiative of Serbia (AEGIS) are presented. Further, the chapter describes some of the applications related to the condensed matter physics, developed at the Scientific Computing Laboratory of the Institute of Physics, University of Belgrade.

Author(s):  
Jagdish Chandra Patni

Powerful computational capabilities and resource availability at a low cost is the utmost demand for high performance computing. The resources for computing can viewed as the edges of an interconnected grid. It can attain the capabilities of grid computing by balancing the load at various levels. Since the nature of resources are heterogeneous and distributed geographically, the grid computing paradigm in its original form cannot be used to meet the requirements, so it can use the capabilities of the cloud and other technologies to achieve the goal. Resource heterogeneity makes grid computing more dynamic and challenging. Therefore, in this article the problem of scalability, heterogeneity and adaptability of grid computing is discussed with a perspective of providing high computing, load balancing and availability of resources.


2010 ◽  
Vol 1 (1) ◽  
pp. 40-54 ◽  
Author(s):  
Carmelo Marcello Iacono-Manno ◽  
Marco Fargetta ◽  
Roberto Barbera ◽  
Alberto Falzone ◽  
Giuseppe Andronico ◽  
...  

The conjugation of High Performance Computing (HPC) and Grid paradigm with applications based on commercial software is one among the major challenges of today e-Infrastructures. Several research communities from either industry or academia need to run high parallel applications based on licensed software over hundreds of CPU cores; a satisfactory fulfillment of such requests is one of the keys for the penetration of this computing paradigm into the industry world and sustainability of Grid infrastructures. This problem has been tackled in the context of the PI2S2 project that created a regional e-Infrastructure in Sicily, the first in Italy over a regional area. Present article will describe the features added in order to integrate an HPC facility into the PI2S2 Grid infrastructure, the adoption of the InifiniBand low-latency net connection, the gLite middleware extended to support MPI/MPI2 jobs, the newly developed license server and the specific scheduling policy adopted. Moreover, it will show the results of some relevant use cases belonging to Computer Fluid-Dynamics (Fluent, OpenFOAM), Chemistry (GAMESS), Astro-Physics (Flash) and Bio-Informatics (ClustalW)).


2020 ◽  
Vol 12 (8) ◽  
pp. 135
Author(s):  
Theo Lynn ◽  
Grace Fox ◽  
Anna Gourinovitch ◽  
Pierangelo Rosati

High performance computing (HPC) is widely recognized as a key enabling technology for advancing scientific progress, industrial competitiveness, national and regional security, and the quality of human life. Notwithstanding this contribution, the large upfront investment and technical expertise required has limited the adoption of HPC to large organizations, government bodies, and third level institutions. Recent advances in cloud computing and telecommunications have the potential to overcome the historical issues associated with HPC through increased flexibility and efficiency, and reduced capital and operational expenditure. This study seeks to advance the literature on technology adoption and assimilation in the under-examined HPC context through a mixed methods approach. Firstly, the determinants of cloud computing adoption for HPC are examined through a survey of 121 HPC decision makers worldwide. Secondly, a modified Delphi method was conducted with 13 experts to identify and prioritize critical issues in the adoption of cloud computing for HPC. Results from the quantitative phase suggest that only organizational and human factors significantly influence cloud computing adoption decisions for HPC. While security was not identified as a significant influencer in adoption decisions, qualitative research findings suggest that data privacy and security issues are an immediate and long-term concern.


Author(s):  
Peter V Coveney

We introduce a definition of Grid computing which is adhered to throughout this Theme Issue. We compare the evolution of the World Wide Web with current aspirations for Grid computing and indicate areas that need further research and development before a generally usable Grid infrastructure becomes available. We discuss work that has been done in order to make scientific Grid computing a viable proposition, including the building of Grids, middleware developments, computational steering and visualization. We review science that has been enabled by contemporary computational Grids, and associated progress made through the widening availability of high performance computing.


Author(s):  
Carmelo Marcello Iacono-Manno ◽  
Marco Fargetta ◽  
Roberto Barbera ◽  
Alberto Falzone ◽  
Giuseppe Andronico ◽  
...  

The conjugation of High Performance Computing (HPC) and Grid paradigm with applications based on commercial software is one among the major challenges of today e-Infrastructures. Several research communities from either industry or academia need to run high parallel applications based on licensed software over hundreds of CPU cores; a satisfactory fulfillment of such requests is one of the keys for the penetration of this computing paradigm into the industry world and sustainability of Grid infrastructures. This problem has been tackled in the context of the PI2S2 project that created a regional e-Infrastructure in Sicily, the first in Italy over a regional area. Present paper will describe the features added in order to integrate an HPC facility into the PI2S2 Grid infrastructure, the adoption of the InifiniBand low-latency net connection, the gLite middleware extended to support MPI/MPI2 jobs, the newly developed license server and the specific scheduling policy adopted. Moreover, it will show the results of some relevant use cases belonging to Computer Fluid-Dynamics (Fluent, OpenFOAM), Chemistry (GAMESS), Astro-Physics (Flash) and Bio-Informatics (ClustalW)).


2012 ◽  
pp. 841-861
Author(s):  
Chao-Tung Yang ◽  
Wen-Chung Shih

Biology databases are diverse and massive. As a result, researchers must compare each sequence with vast numbers of other sequences. Comparison, whether of structural features or protein sequences, is vital in bioinformatics. These activities require high-speed, high-performance computing power to search through and analyze large amounts of data and industrial-strength databases to perform a range of data-intensive computing functions. Grid computing and Cluster computing meet these requirements. Biological data exist in various web services that help biologists search for and extract useful information. The data formats produced are heterogeneous and powerful tools are needed to handle the complex and difficult task of integrating the data. This paper presents a review of the technologies and an approach to solve this problem using cluster and grid computing technologies. The authors implement an experimental distributed computing application for bioinformatics, consisting of basic high-performance computing environments (Grid and PC Cluster systems), multiple interfaces at user portals that provide useful graphical interfaces to enable biologists to benefit directly from the use of high-performance technology, and a translation tool for converting biology data into XML format.


2011 ◽  
Vol 3 (1) ◽  
pp. 69-88
Author(s):  
Chao-Tung Yang ◽  
Wen-Chung Shih

Biology databases are diverse and massive. As a result, researchers must compare each sequence with vast numbers of other sequences. Comparison, whether of structural features or protein sequences, is vital in bioinformatics. These activities require high-speed, high-performance computing power to search through and analyze large amounts of data and industrial-strength databases to perform a range of data-intensive computing functions. Grid computing and Cluster computing meet these requirements. Biological data exist in various web services that help biologists search for and extract useful information. The data formats produced are heterogeneous and powerful tools are needed to handle the complex and difficult task of integrating the data. This paper presents a review of the technologies and an approach to solve this problem using cluster and grid computing technologies. The authors implement an experimental distributed computing application for bioinformatics, consisting of basic high-performance computing environments (Grid and PC Cluster systems), multiple interfaces at user portals that provide useful graphical interfaces to enable biologists to benefit directly from the use of high-performance technology, and a translation tool for converting biology data into XML format.


Sign in / Sign up

Export Citation Format

Share Document