Cell Phone Image-Based Plant Disease Classification

Author(s):  
Marion Neumann ◽  
Lisa Hallau ◽  
Benjamin Klatt ◽  
Kristian Kersting ◽  
Christian Bauckhage

Modern communication and sensor technology coupled with powerful pattern recognition algorithms for information extraction and classification allow the development and use of integrated systems to tackle environmental problems. This integration is particularly promising for applications in crop farming, where such systems can help to control growth and improve yields while harmful environmental impacts are minimized. Thus, the vision of sustainable agriculture for anybody, anytime, and anywhere in the world can be put into reach. This chapter reviews and presents approaches to plant disease classification based on cell phone images, a novel way to supply farmers with personalized information and processing recommendations in real time. Several statistical image features and a novel scheme of measuring local textures of leaf spots are introduced. The classification of disease symptoms caused by various fungi or bacteria are evaluated for two important agricultural crop varieties, wheat and sugar beet.

Biometrics ◽  
2017 ◽  
pp. 778-805
Author(s):  
Marion Neumann ◽  
Lisa Hallau ◽  
Benjamin Klatt ◽  
Kristian Kersting ◽  
Christian Bauckhage

Modern communication and sensor technology coupled with powerful pattern recognition algorithms for information extraction and classification allow the development and use of integrated systems to tackle environmental problems. This integration is particularly promising for applications in crop farming, where such systems can help to control growth and improve yields while harmful environmental impacts are minimized. Thus, the vision of sustainable agriculture for anybody, anytime, and anywhere in the world can be put into reach. This chapter reviews and presents approaches to plant disease classification based on cell phone images, a novel way to supply farmers with personalized information and processing recommendations in real time. Several statistical image features and a novel scheme of measuring local textures of leaf spots are introduced. The classification of disease symptoms caused by various fungi or bacteria are evaluated for two important agricultural crop varieties, wheat and sugar beet.


Information ◽  
2020 ◽  
Vol 11 (2) ◽  
pp. 95 ◽  
Author(s):  
Kaizhou Li ◽  
Jianhui Lin ◽  
Jinrong Liu ◽  
Yandong Zhao

Diseases from Ginkgo biloba have brought great losses to medicine and the economy. Therefore, if the degree of disease can be automatically identified in Ginkgo biloba leaves, people will take appropriate measures to avoid losses in advance. Deep learning has made great achievements in plant disease identification and classification. For this paper, the convolution neural network model was used to classify the different degrees of ginkgo leaf disease. This study used the VGGNet-16 and Inception V3 models. After preprocessing and training 1322 original images under laboratory conditions and 2408 original images under field conditions, 98.44% accuracy was achieved under laboratory conditions and 92.19% under field conditions with the VGG model. The Inception V3 model achieved 92.3% accuracy under laboratory conditions and 93.2% under field conditions. Thus, the Inception V3 model structure was more suitable for field conditions. To our knowledge, there is very little research on the classification of different degrees of the same plant disease. The success of this study will have a significant impact on the prediction and early prevention of ginkgo leaf blight.


2021 ◽  
Vol 36 (1) ◽  
pp. 443-450
Author(s):  
Mounika Jammula

As of 2020, the total area planted with crops in India overtook 125.78 million hectares. India is the second biggest organic product maker in the world. Thus, an Indian economy greatly depends on farming products. Nowadays, farmers suffer a drop in production due to a lot of diseases and pests. Thus, to overcome this problem, this article presents the artificial intelligence based deep learning approach for plant disease classification. Initially, the adaptive mean bilateral filter (AMBF) for noise removal and enhancement operations. Then, Gaussian kernel fuzzy C-means (GKFCM) approach is used to segment the effected disease regions. The optimal features from color, texture and shape features are extracted by using GLCM. Finally, Deep learning convolutional neural network (DLCNN) is used for the classification of five class diseases. The segmentation and classification performance of proposed method outperforms as compared with the state of art approaches.


Plant diseases have been a major crisis that is disturbing the food production. So there is a need to provide proper procedures for plant disease detection at its growing age and also during harvesting stage. Timely disease detection can help the user to respond instantly and sketch for some defensive actions. This detection can be carried out without human intervention by using plant leaf images. Deep learning is progressively best for image detection and classification. In this effort, a deep learning based GoogleNet architecture is used for plant diseases detection. The model is trained using public database of 54,306 images of 14 crop varieties and their respective diseases. It achieves 97.82% accuracy for 14 crop types making it capable of further deployment in a crop detection and protection application.


2022 ◽  
pp. 51-77
Author(s):  
Meeradevi ◽  
Monica R. Mundada ◽  
Shilpa M.

Modern technologies have improved their application in field of agriculture in order to improve production. Plant diseases are harmful to plant growth, which leads to reduced quality and quantity of crop. Early identification of plant disease will reduce the loss of the crop productivity. So, it is necessary to identify and diagnose the disease at an early stage before it spreads to the entire field. In this chapter, the proposed model uses VGG16 with attention mechanism for leaf disease classification. This model makes use of convolution neural network which consist of convolution block, max pool layer, and fully connected layer with softmax as an activation function. The proposed approach integrates CNN with attention mechanism to focus more on the diseased part of leaf and increase the classification accuracy. The proposed model design is a novel deep learning model to perform the fine tuning in the classification of nine different type of tomato plant disease.


Author(s):  
Marion Neumann ◽  
Lisa Hallau ◽  
Benjamin Klatt ◽  
Kristian Kersting ◽  
Christian Bauckhage

Plants ◽  
2020 ◽  
Vol 9 (10) ◽  
pp. 1319
Author(s):  
Muhammad Hammad Saleem ◽  
Johan Potgieter ◽  
Khalid Mahmood Arif

Recently, plant disease classification has been done by various state-of-the-art deep learning (DL) architectures on the publicly available/author generated datasets. This research proposed the deep learning-based comparative evaluation for the classification of plant disease in two steps. Firstly, the best convolutional neural network (CNN) was obtained by conducting a comparative analysis among well-known CNN architectures along with modified and cascaded/hybrid versions of some of the DL models proposed in the recent researches. Secondly, the performance of the best-obtained model was attempted to improve by training through various deep learning optimizers. The comparison between various CNNs was based on performance metrics such as validation accuracy/loss, F1-score, and the required number of epochs. All the selected DL architectures were trained in the PlantVillage dataset which contains 26 different diseases belonging to 14 respective plant species. Keras with TensorFlow backend was used to train deep learning architectures. It is concluded that the Xception architecture trained with the Adam optimizer attained the highest validation accuracy and F1-score of 99.81% and 0.9978 respectively which is comparatively better than the previous approaches and it proves the novelty of the work. Therefore, the method proposed in this research can be applied to other agricultural applications for transparent detection and classification purposes.


2021 ◽  
pp. 1-11
Author(s):  
Yaning Liu ◽  
Lin Han ◽  
Hexiang Wang ◽  
Bo Yin

Papillary thyroid carcinoma (PTC) is a common carcinoma in thyroid. As many benign thyroid nodules have the papillary structure which could easily be confused with PTC in morphology. Thus, pathologists have to take a lot of time on differential diagnosis of PTC besides personal diagnostic experience and there is no doubt that it is subjective and difficult to obtain consistency among observers. To address this issue, we applied deep learning to the differential diagnosis of PTC and proposed a histological image classification method for PTC based on the Inception Residual convolutional neural network (IRCNN) and support vector machine (SVM). First, in order to expand the dataset and solve the problem of histological image color inconsistency, a pre-processing module was constructed that included color transfer and mirror transform. Then, to alleviate overfitting of the deep learning model, we optimized the convolution neural network by combining Inception Network and Residual Network to extract image features. Finally, the SVM was trained via image features extracted by IRCNN to perform the classification task. Experimental results show effectiveness of the proposed method in the classification of PTC histological images.


Sign in / Sign up

Export Citation Format

Share Document