scholarly journals Using Deep Learning for Image-Based Different Degrees of Ginkgo Leaf Disease Classification

Information ◽  
2020 ◽  
Vol 11 (2) ◽  
pp. 95 ◽  
Author(s):  
Kaizhou Li ◽  
Jianhui Lin ◽  
Jinrong Liu ◽  
Yandong Zhao

Diseases from Ginkgo biloba have brought great losses to medicine and the economy. Therefore, if the degree of disease can be automatically identified in Ginkgo biloba leaves, people will take appropriate measures to avoid losses in advance. Deep learning has made great achievements in plant disease identification and classification. For this paper, the convolution neural network model was used to classify the different degrees of ginkgo leaf disease. This study used the VGGNet-16 and Inception V3 models. After preprocessing and training 1322 original images under laboratory conditions and 2408 original images under field conditions, 98.44% accuracy was achieved under laboratory conditions and 92.19% under field conditions with the VGG model. The Inception V3 model achieved 92.3% accuracy under laboratory conditions and 93.2% under field conditions. Thus, the Inception V3 model structure was more suitable for field conditions. To our knowledge, there is very little research on the classification of different degrees of the same plant disease. The success of this study will have a significant impact on the prediction and early prevention of ginkgo leaf blight.

2021 ◽  
Vol 36 (1) ◽  
pp. 443-450
Author(s):  
Mounika Jammula

As of 2020, the total area planted with crops in India overtook 125.78 million hectares. India is the second biggest organic product maker in the world. Thus, an Indian economy greatly depends on farming products. Nowadays, farmers suffer a drop in production due to a lot of diseases and pests. Thus, to overcome this problem, this article presents the artificial intelligence based deep learning approach for plant disease classification. Initially, the adaptive mean bilateral filter (AMBF) for noise removal and enhancement operations. Then, Gaussian kernel fuzzy C-means (GKFCM) approach is used to segment the effected disease regions. The optimal features from color, texture and shape features are extracted by using GLCM. Finally, Deep learning convolutional neural network (DLCNN) is used for the classification of five class diseases. The segmentation and classification performance of proposed method outperforms as compared with the state of art approaches.


2022 ◽  
pp. 51-77
Author(s):  
Meeradevi ◽  
Monica R. Mundada ◽  
Shilpa M.

Modern technologies have improved their application in field of agriculture in order to improve production. Plant diseases are harmful to plant growth, which leads to reduced quality and quantity of crop. Early identification of plant disease will reduce the loss of the crop productivity. So, it is necessary to identify and diagnose the disease at an early stage before it spreads to the entire field. In this chapter, the proposed model uses VGG16 with attention mechanism for leaf disease classification. This model makes use of convolution neural network which consist of convolution block, max pool layer, and fully connected layer with softmax as an activation function. The proposed approach integrates CNN with attention mechanism to focus more on the diseased part of leaf and increase the classification accuracy. The proposed model design is a novel deep learning model to perform the fine tuning in the classification of nine different type of tomato plant disease.


2021 ◽  
Vol 38 (3) ◽  
pp. 699-709
Author(s):  
Shivali Amit Wagle ◽  
Harikrishnan R

Deep learning models are playing a vital role in classification goals that can have propitious results. In the past few years, many models are being used for this purpose of plant disease classification. This work has assisted in the process of identification and classification of a plant leaf disease. In this paper, the Tomato plant leaf images are taken from the PlantVillage Database consisting of one healthy and eight disease classes. The disease classes are selected based on the occurrence of the disease in India. The deep learning models of AlexNet, VGG16, GoogLeNet, MobileNetv2, and SqueezeNet are used in this work for the classification of Tomato plant leaf as healthy or diseased and further which disease class it belongs to. The models used here are all the pre-trained models, so transfer learning is used to fit the total number of classes that need to be classified by the network model. VGG16 model outperformed giving 99.17% accuracy compared to AlexNet, GoogLeNet, MobileNetv2, and SqueezeNet. The work concludes with the model’s validation results on the set of images captured at Krishi Vigyan Kendra Narayangaon (KVKN), India.


Plants ◽  
2020 ◽  
Vol 9 (10) ◽  
pp. 1319
Author(s):  
Muhammad Hammad Saleem ◽  
Johan Potgieter ◽  
Khalid Mahmood Arif

Recently, plant disease classification has been done by various state-of-the-art deep learning (DL) architectures on the publicly available/author generated datasets. This research proposed the deep learning-based comparative evaluation for the classification of plant disease in two steps. Firstly, the best convolutional neural network (CNN) was obtained by conducting a comparative analysis among well-known CNN architectures along with modified and cascaded/hybrid versions of some of the DL models proposed in the recent researches. Secondly, the performance of the best-obtained model was attempted to improve by training through various deep learning optimizers. The comparison between various CNNs was based on performance metrics such as validation accuracy/loss, F1-score, and the required number of epochs. All the selected DL architectures were trained in the PlantVillage dataset which contains 26 different diseases belonging to 14 respective plant species. Keras with TensorFlow backend was used to train deep learning architectures. It is concluded that the Xception architecture trained with the Adam optimizer attained the highest validation accuracy and F1-score of 99.81% and 0.9978 respectively which is comparatively better than the previous approaches and it proves the novelty of the work. Therefore, the method proposed in this research can be applied to other agricultural applications for transparent detection and classification purposes.


Author(s):  
Kaizhou Li ◽  
Jianhui Lin ◽  
Jinrong Liu ◽  
Yandong Zhao ◽  
Suhan Dou ◽  
...  

Author(s):  
K. Thaiyalnayaki ◽  
Christeena Joseph
Keyword(s):  

Plants are prone to different diseases caused by multiple reasons like environmental conditions, light, bacteria, and fungus. These diseases always have some physical characteristics on the leaves, stems, and fruit, such as changes in natural appearance, spot, size, etc. Due to similar patterns, distinguishing and identifying category of plant disease is the most challenging task. Therefore, efficient and flawless mechanisms should be discovered earlier so that accurate identification and prevention can be performed to avoid several losses of the entire plant. Therefore, an automated identification system can be a key factor in preventing loss in the cultivation and maintaining high quality of agriculture products. This paper introduces modeling of rose plant leaf disease classification technique using feature extraction process and supervised learning mechanism. The outcome of the proposed study justifies the scope of the proposed system in terms of accuracy towards the classification of different kind of rose plant disease.


Author(s):  
Parvathi R. ◽  
Pattabiraman V.

This chapter proposes a hybrid method for classification of the objects based on deep neural network and a similarity-based search algorithm. The objects are pre-processed with external conditions. After pre-processing and training different deep learning networks with the object dataset, the authors compare the results to find the best model to improve the accuracy of the results based on the features of object images extracted from the feature vector layer of a neural network. RPFOREST (random projection forest) model is used to predict the approximate nearest images. ResNet50, InceptionV3, InceptionV4, and DenseNet169 models are trained with this dataset. A proposal for adaptive finetuning of the deep learning models by determining the number of layers required for finetuning with the help of the RPForest model is given, and this experiment is conducted using the Xception model.


Sign in / Sign up

Export Citation Format

Share Document