Evolutionary Computation Techniques for Community Detection in Social Network Analysis

Author(s):  
Abhishek Garg ◽  
Anupam Biswas ◽  
Bhaskar Biswas

Community detection is a topic of great interest in complex network analysis. The basic problem is to identify closely connected groups of nodes (i.e. the communities) from the networks of various objects represented in the form of a graph. Often, the problem is expressed as an optimization problem, where popular optimization techniques such as evolutionary computation techniques are utilized. The importance of these approaches is increasing for efficient community detection with the rapidly growing networks. The primary focus of this chapter is to study the applicability of such techniques for community detection. Our study includes the utilization of Genetic Algorithm (GA) and Particle Swarm Optimization (PSO) with their numerous variants developed specifically for community detection. We have discussed several issues related to community detection, GA, PSO and the major hurdles faced during the implication of evolutionary approaches. In addition, the chapter also includes a detailed study of how these issues are being tackled with the various developments happening in the domain.

Inverted Pendulum is a popular non-linear, unstable control problem where implementation of stabilizing the pole angle deviation, along with cart positioning is done by using novel control strategies. Soft computing techniques are applied for getting optimal results. The evolutionary computation forms the key research area for adaptation and optimization. The approach of finding optimal or near optimal solutions to the problem is based on natural evolution in evolutionary computation. The genetic algorithm is a method based on biological evolution and natural selection for solving both constrained and unconstrained problems. Particle swarm optimization is a stochastic search method inspired by collective behavior of animals like flocking of birds, schooling of fishes, swarming of bees etc. that is suited to continuous variable problems. These methods are applied to the inverted pendulum problem and their performance studied.


2020 ◽  
Vol 10 (9) ◽  
pp. 3126
Author(s):  
Desheng Lyu ◽  
Bei Wang ◽  
Weizhe Zhang

With the development of network technology and the continuous advancement of society, the combination of various industries and the Internet has produced many large-scale complex networks. A common feature of complex networks is the community structure, which divides the network into clusters with tight internal connections and loose external connections. The community structure reveals the important structure and topological characteristics of the network. The detection of the community structure plays an important role in social network analysis and information recommendation. Therefore, based on the relevant theory of complex networks, this paper introduces several common community detection algorithms, analyzes the principles of particle swarm optimization (PSO) and genetic algorithm and proposes a particle swarm-genetic algorithm based on the hybrid algorithm strategy. According to the test function, the single and the proposed algorithm are tested, respectively. The results show that the algorithm can maintain the good local search performance of the particle swarm optimization algorithm and also utilizes the good global search ability of the genetic algorithm (GA) and has good algorithm performance. Experiments on each community detection algorithm on real network and artificially generated network data sets show that the particle swarm-genetic algorithm has better efficiency in large-scale complex real networks or artificially generated networks.


2012 ◽  
Vol 498 ◽  
pp. 115-125 ◽  
Author(s):  
H. Hachimi ◽  
Rachid Ellaia ◽  
A. El Hami

In this paper, we present a new hybrid algorithm which is a combination of a hybrid genetic algorithm and particle swarm optimization. We focus in this research on a hybrid method combining two heuristic optimization techniques, genetic algorithms (GA) and particle swarm optimization (PSO) for the global optimization. Denoted asGA-PSO, this hybrid technique incorporates concepts fromGAandPSOand creates individuals in a new generation not only by crossover and mutation operations as found inGAbut also by mechanisms ofPSO. The performance of the two algorithms has been evaluated using several experiments.


2019 ◽  
Vol 8 (2) ◽  
pp. 40
Author(s):  
Saman M. Almufti ◽  
Amar Yahya Zebari ◽  
Herman Khalid Omer

This paper provides an introduction and a comparison of two widely used evolutionary computation algorithms: Genetic Algorithm (GA) and Particle Swarm Optimization (PSO) based on the previous studies and researches. It describes Genetic Algorithm basic functionalities including various steps such as selection, crossover, and mutation.  


2013 ◽  
Vol 2 (3) ◽  
pp. 86-101 ◽  
Author(s):  
Provas Kumar Roy ◽  
Dharmadas Mandal

The aim of this paper is to evaluate a hybrid biogeography-based optimization approach based on the hybridization of biogeography-based optimization with differential evolution to solve the optimal power flow problem. The proposed method combines the exploration of differential evolution with the exploitation of biogeography-based optimization effectively to generate the promising candidate solutions. Simulation experiments are carried on standard 26-bus and IEEE 30-bus systems to illustrate the efficacy of the proposed approach. Results demonstrated that the proposed approach converged to promising solutions in terms of quality and convergence rate when compared with the original biogeography-based optimization and other population based optimization techniques like simple genetic algorithm, mixed integer genetic algorithm, particle swarm optimization and craziness based particle swarm optimization.


2015 ◽  
Vol 2015 ◽  
pp. 1-8
Author(s):  
Sangwook Lee

Analysis of bargaining game using evolutionary computation is essential issue in the field of game theory. This paper investigates the interaction and coevolutionary process among heterogeneous artificial agents using evolutionary computation (EC) in the bargaining game. In particular, the game performance with regard to payoff through the interaction and coevolution of agents is studied. We present three kinds of EC based agents (EC-agent) participating in the bargaining game: genetic algorithm (GA), particle swarm optimization (PSO), and differential evolution (DE). The agents’ performance with regard to changing condition is compared. From the simulation results it is found that the PSO-agent is superior to the other agents.


2018 ◽  
Vol 140 (10) ◽  
Author(s):  
Majid Siavashi ◽  
Mohsen Yazdani

Optimization of oil production from petroleum reservoirs is an interesting and complex problem which can be done by optimal control of well parameters such as their flow rates and pressure. Different optimization techniques have been developed yet, and metaheuristic algorithms are commonly employed to enhance oil recovery projects. Among different metaheuristic techniques, the genetic algorithm (GA) and the particle swarm optimization (PSO) have received more attention in engineering problems. These methods require a population and many objective function calls to approach more the global optimal solution. However, for a water flooding project in a reservoir, each function call requires a long time reservoir simulation. Hence, it is necessary to reduce the number of required function evaluations to increase the rate of convergence of optimization techniques. In this study, performance of GA and PSO are compared with each other in an enhanced oil recovery (EOR) project, and Newton method is linked with PSO to improve its convergence speed. Furthermore, hybrid genetic algorithm-particle swarm optimization (GA-PSO) as the third optimization technique is introduced and all of these techniques are implemented to EOR in a water injection project with 13 decision variables. Results indicate that PSO with Newton method (NPSO) is remarkably faster than the standard PSO (SPSO). Also, the hybrid GA-PSO method is more capable of finding the optimal solution with respect to GA and PSO. In addition, GA-PSO, NPSO, and GA-NPSO methods are compared and, respectively, GA-NPSO and NPSO showed excellence over GA-PSO.


In the contemporary circumstances, manual solving of job shop scheduling problem (JSSP) is quite time consuming and inaccurate. The main intention of this paper is to analyze the performance of various optimization techniques in JSSP in order to minimize makespan time. This paper aims to analyze four optimization techniques viz, particle swarm optimization (PSO), genetic algorithm (GA), opposition based genetic algorithm(OGA) and opposition based particle swarm optimization with Cauchy distribution (OPSO CD) in addition to the existing optimization techniques applied in various research papers on combinatorial optimization problems viz., JSSP. A comparative study of these optimization techniques were conducted and analyzed to find out the most effective optimization technique on solving JSSP. Results show that OPSO CD is found to possess minimum makespan time in comparison with other algorithms for JSSP.


Sign in / Sign up

Export Citation Format

Share Document